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Abstract

Resource bisimilarity has been proposed in the literature on concurrency theory as a notion of bisimilarity
over labeled transition systems that takes into account the number of choices that a system has. Indepen-
dently, g-bisimilarity has been defined over Kripke models as a suitable notion of bisimilarity for graded
modal logic. This note shows that these two notions of bisimilarity coincide over image-finite Kripke frames.
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1. Introduction

In the setting of concurrency theory, resource
bisimilarity has been defined over labeled transition
systems in [3, 4] in order to take into account the
number of choices that a system has. Intuitively,
unlike ordinary bisimilarity [12], resource bisimilar-
ity relates two processes only if their behaviors un-
fold to isomorphic synchronization trees. (As re-
marked in the conclusions of [4], resource bisimi-
larity is an adaptation of the counting bisimilarity
of [6].) In the setting of modal logics, de Rijke
defined in [7] the notion of g-bisimilarity (‘graded
bisimilarity’) over Kripke models (which are Kripke
frames augmented by a valuation function) as a
suitable notion of bisimilarity for graded modal
logic.

In light of the results in [4] connecting resource
bisimilarity with a version of graded modal logic,
it is natural to ask oneself whether there are any
relations between resource and graded bisimilar-
ity. This note addresses that question and shows
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that these two notions of bisimilarity coincide over
image-finite Kripke frames. This result provides
yet another example of a notion that has been dis-
covered independently in the fields of concurrency
theory and modal logics, and may help connect re-
search on graded modal logics in those two fields of
research.

In order to show that the above-mentioned no-
tions of bisimilarity coincide, we reconcile some
differences in the settings in which they are de-
fined in the original literature. For reasons of no-
tational simplicity, we have chosen to rephrase re-
source bisimilarity over Kripke frames with a single
transition relation. However, the coincidence result
we offer in this note also holds over labeled tran-
sition systems, over Kripke frames with multiple
transition relations as well as over Kripke models,
if the notions of resource and graded bisimilarity
are rephrased in those settings in the obvious way.

We offer two alternative proofs of our result to
the effect that resource and graded bisimilarity co-
incide over image-finite Kripke frames. The first
proof (presented in Section 3) is ‘elementary’ and
‘constructive’ in that it only uses the definitions of
those relations, and explicitly shows how to trans-
form one type of relation into the other. It also
yields the, admittedly easy, observation that re-
source bisimilarity is included in graded bisimilar-
ity over all Kripke frames, and not just the image-
finite ones. The second proof, which is developed in
Section 4, relies on a combination of known results
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from the fields of modal logics and coalgebras. This
proof highlights the power of the general tools con-
necting coalgebras and modal logics—see, e.g., the
paper [5] for a survey of the coalgebraic approach to
modal logics—, and offers yet another application
of coalgebraic techniques. However, it is admittedly
less direct and ‘elementary’. Since we feel that both
proofs have their merit, and that different readers
will find one more palatable than the other, we de-
cided to present both of them in this paper.

The rest of this note is organized as follows. In
Section 2, we will define resource bisimilarity and
graded bisimilarity. Those two notions of bisimilar-
ity are shown to coincide over image-finite Kripke
frames in Section 3. We present an alternative proof
of our main result based on techniques from coalge-
bra and modal logics in Section 4. We conclude the
paper by pointing out in Section 5 the expected fact
that the Hennessy-Milner property fails for graded
modal logic in the absence of image finiteness.

2. The two bisimulations

We will define both resource bisimilarity and g-
bisimilarity over Kripke frames, which are pairs
(S,R), where S is a set (of ‘states’) and R ⊆ S2

is a binary relation over S. We define P<ω(S) to
be the set of all finite subsets of S. Given a state
s ∈ S, we define R(s) = {s′ | (s, s′) ∈ R}. A Kripke
frame (S,R) is image finite if R(s) is finite for each
s ∈ S. We often use the infix notation for relations,
writing s R s′ for (s, s′) ∈ R. We write |X| for the
cardinality of a finite set X.

2.1. Resource bisimulation

In the setting of Kripke frames, a resource bisim-
ulation, which we hereafter call an r-bisimulation,
is defined as follows.

Definition 2.1 (Resource bisimulation).
Given Kripke frames F1 = (S1, R1) and
F2 = (S2, R2), a relation R⊆ S1 × S2 is an
r-bisimulation if whenever (s1, s2) ∈R, the
following hold:

1. There is an injective function g : R1(s1) →
R2(s2) such that (s, g(s)) ∈R for each s ∈
R1(s1).

2. There is an injective function h : R2(s2) →
R1(s1) such that (h(s), s) ∈R for each s ∈
R2(s2).

The largest r-bisimulation between a given pair of
Kripke frames is called r-bisimilarity.

Rather than involving two injective functions, a
minor adaptation of the classic Cantor-Schröder-
Bernstein theorem can be employed to arrive at a
characterization of r-bisimilarity in terms of bijec-
tions. We formalize this as follows.

Proposition 2.2. Given Kripke frames F1 =
(S1, R1) and F2 = (S2, R2), a relation R⊆ S1 × S2

is an r-bisimulation iff whenever (s1, s2) ∈R, there
is a bijective function i : R1(s1)→ R2(s2) such that
(s, i(s)) ∈R for each s ∈ R1(s1).

Proof This is immediate from the following claim:
If

• A and B are sets,

• R⊆ A×B,

• g : A → B is an injection such that
(a, g(a)) ∈R, for each a ∈ A, and

• h : B → A is an injection such that
(h(b), b) ∈R, for each b ∈ B,

then there is a bijection i : A → B such that
(a, i(a)) ∈R, for each a ∈ A.

To show the above claim, we adapt a proof of
the classic Cantor-Schröder-Bernstein theorem that
employs Tarski’s fixed-point theorem [16].

Recall that the partially ordered set (P(A),⊆) is
a complete lattice. Define the map f : P(A) →
P(A) as follows:

f(S) = A \ h(B \ (g(S)).

Observe that f is monotone. Indeed, if S1 ⊆ S2 ⊆
A, then

a ∈ f(S1)⇔ a ∈ A \ h(B \ g(S1))
⇔ a ∈ A& a 6∈ h(B \ g(S1))
⇒ a ∈ A& a 6∈ h(B \ g(S2))
⇔ a ∈ f(S2).

Since f is monotone, by Tarski’s fixed-point theo-
rem, f has a fixed point C. Thus

C = A \ h(B \ g(C)).

This means that

A \ C = h(B \ g(C)).
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Moreover, h : B\g(C)→ A\C is a bijection because
h is injective.

Now define i : A→ B as follows:

i(x) =
{
g(x) if x ∈ C,
h−1(x) if x ∈ A \ C.

Note that i is a bijection by construction. We are
therefore left to argue that i isR-preserving. This is
clear for each x ∈ C, since (x, g(x)) ∈R holds by our
initial assumption about g. For each x ∈ A \C, we
have that i(x) = h−1(x). Therefore x = h(h−1(x))
and (x, h−1(x)) ∈R by the initial assumption about
h. This completes the proof. �

2.2. G-bisimulation
The g-bisimulation in [7] is defined as a tuple of

relations. Adapted to our setting, we present it as
follows.

Definition 2.3 (G-bisimulation tuple). Let
F1 = (S1, R1), F2 = (S2, R2) be two Kripke frames.
A g-bisimulation tuple between F1 and F2 is a tuple
(Z1,Z2, . . .) of relations satisfying the following
requirements:

1. Z1 is non-empty,
2. for each i, Zi⊆ P<ω(S1) × P<ω(S2) (that is,
Zi only consists of pairs of finite sets),

3. for each i, if X Zi Y , then |X| = |Y | = i
(that is, Zi only consists of pairs of sets with
cardinality i),

4. if {x} Z1 {y} and X ⊆ R1(x), where |X| =
i ≥ 1, then there exists Y ∈ P<ω(S2) with
Y ⊆ R2(y) and X Zi Y ,

5. if {x} Z1 {y} and Y ⊆ R2(y), where |Y | =
i ≥ 1, then there exists X ∈ P<ω(S1) with
X ⊆ R1(x) and X Zi Y , and

6. if X Zi Y , then
(a) for all x ∈ X there exists y ∈ Y with
{x} Z1 {y}, and

(b) for all y ∈ Y there exists x ∈ X with
{x} Z1 {y}.

A g-bisimulation tuple is structurally the same as
the g-bisimulation defined in [7], except that the
notion of g-bisimulation in [7] was presented over
Kripke models (that is, Kripke frames augmented
with a valuation of proposition letters), and there
was a clause requiring that Z1 relate only pairs of
singletons whose elements satisfy the same propo-
sition letters.

Now note that the Zi are pairwise disjoint, as
each Zi only pairs together sets of size i. Thus we

can consider a g-bisimulation tuple as being a single
relation Z=

⋃
Zi.

Definition 2.4 (G-bisimulation relation). Let
F1 = (S1, R1), F2 = (S2, R2) be two Kripke frames.
A g-bisimulation relation between F1 and F2 is a
binary relation Z⊆ P<ω(S1) × P<ω(S2) satisfying
the following requirements:

1. whenever X Z Y ,
(a) |X| = |Y |,
(b) for each x ∈ X, there is a y ∈ Y such that
{x} Z {y}, and

(c) for each y ∈ Y , there is an x ∈ X such
that {x} Z {y};

2. whenever {x} Z {y}
(a) if X ⊆ R1(x) is finite, then there exists

some finite Y ⊆ R2(y) such that X Z Y ,
and

(b) if Y ⊆ R2(y) is finite, then there exists
some finite X ⊆ R1(x) such that X Z Y .

The connection between a g-bisimulation tuple and
a g-bisimulation relation can be formalized as fol-
lows.

Lemma 2.5. The following statements hold:

1. If (Z1,Z2, . . .) is a g-bisimulation tuple, then
Z=

⋃
Zi is a g-bisimulation relation.

2. Let Z be a g-bisimulation relation and, for each
i, let Zi be the set of pairs (X,Y ) in Z such
that X and Y have size i. Then (Z1,Z2, . . .)
is a g-bisimulation tuple.

It is easy to see that the union of an arbitrary family
of g-bisimulation relations is itself a g-bisimulation
relation, and hence the union of all g-bisimulation
relations is the largest g-bisimulation relation. If Z
is the largest g-bisimulation between F1 = (S1, R1)
and F2 = (S2, R2), we define g-bisimilarity as the
relation {(s1, s2) | {s1} Z {s2}}.

3. Connecting the two

We now proceed to prove the following theorem,
to the effect that r- and g-bisimilarity coincide over
image-finite Kripke frames.

Theorem 3.1. Over image-finite Kripke frames,
g-bisimilarity coincides with r-bisimilarity.
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In order to show the above result, we first establish
that r-bisimilarity is included in g-bisimilarity. We
then prove that the converse inclusion also holds.
In the proof of the latter result, we employ the as-
sumption that the Kripke frames be image finite.

Definition 3.2. We say that a g-bisimulation
Z⊆ P<ω(S1) × P<ω(S2) is an extension of an
r-bisimulation R⊆ S1 × S2 if {({s1}, {s2}) |
(s1, s2) ∈R} ⊆Z.

Proposition 3.3. Let F1 = (S1, R1) and F2 =
(S2, R2) be Kripke frames. If R⊆ S1 × S2 is an
r-bisimulation between F1 and F2, then there is a
g-bisimulation Z⊆ P<ω(S1) × P<ω(S2) that is an
extension of R.

Proof Suppose that R is an r-bisimulation. For
each x ∈ S1 and y ∈ S2 for which x R y, by
Proposition 2.2 we can select a bijective function
fx,y : R1(x) → R2(y) such that a R fx,y(a) for
each a ∈ R1(x). We define

Z=
⋃

xRy,A∈P<ω(R1(x))

{({x}, {y}), (A, fx,y(A))}.

One can easily verify that Z is a g-bisimulation and
an extension of R. �

Corollary 3.4. Over Kripke frames, r-bisimilarity
is contained in g-bisimilarity.

Proof As r-bisimilarity can be extended by Propo-
sition 3.3 to a g-bisimulation relation, the restric-
tion of the g-bisimulation to singletons (after strip-
ping away set-theoretic brackets) is contained in g-
bisimilarity. �

In preparation for showing the converse of Corol-
lary 3.4, we prove the following lemma.

Lemma 3.5. If Z is the largest g-bisimulation be-
tween F1 = (S1, R1) and F2 = (S2, R2), then Z
is difunctional [14], that is, whenever A1 Z A2,
A1 Z B2 and B1 Z A2, then also B1 Z B2.

Proof Let Z be the largest g-bisimulation between
F1 and F2. Let Ẑ be the one-step difunctional clo-
sure of Z, that is, Ẑ =Z ∪ df(Z), where df(Z) is
the relation

{(B1, B2) | ∃A1, A2 : A1 Z A2, A1 Z B2, B1 Z A2}.

We show that Ẑ is a g-bisimulation.

First suppose that B1ẐB2 because there are
A1, A2 such that B1 Z A2, A1 Z A2, and A1 Z B2,
which we may write as a chain thus:

B1 Z A2 Z−1 A1 Z B2.

As Z and Z−1 only relate two sets of the same
size, applying this reasoning multiple times reveals
|B1| = |B2|. Next given b1 ∈ B1, we have that there
is some a2 ∈ A2, such that {b1} Z {a2}. Similarly,
there is some a1 ∈ A1 such that {a1} Z {a2}. Fi-
nally, there is some b2 ∈ B2 such that {a1} Z {b2}.
As Ẑ is the one-step difunctional closure of Z, we
have that {b1}Ẑ{b2}. A nearly identical argument
can be used to show that given b2 ∈ B2 there is a
b1 ∈ B1 such that {b1}Ẑ{b2}.

Next suppose that {b1}Ẑ{b2} because there exist
a1, a2 such that

{b1} Z {a2} Z−1 {a1} Z {b2}.

Now assume that B1 ⊆ R1(b1). Then there exists
some A2 ⊆ R2(a2) such that B1 Z A2, there exists
some A1 ⊆ R1(a1) such that A1 Z A2, and finally
there exists some B2 ⊆ R2(b2) such that A1 Z B2.
As Ẑ is the one-step difunctional closure of Z, we
have that B1ẐB2. A nearly identical argument can
be used to show that, given B2 ⊆ R2(b2), there
exists some B1 ⊆ R1(b1) such that B1ẐB2.

This shows that Ẑ is a g-bisimulation. As Z⊆ Ẑ
and Z is the largest g-bisimulation, Z= Ẑ. Hence
Z is difunctional, which was to be shown. �

Theorem 3.6. Over image-finite Kripke frames,
g-bisimilarity is an r-bisimulation.

Proof Let Z be the largest g-bisimulation relation
between frames F1 = (S1, R1) and F2 = (S2, R2).
We show that Z is an r-bisimulation. Suppose that
{a} Z {b}. By Proposition 2.2, it suffices only to
prove that there is a Z-preserving bijection between
R1(a) and R2(b). To this end, for each x ∈ R1(a),
let

Bx = {y ∈ R2(b) | {x} Z {y}},

and for each y ∈ R2(b), let

Ay = {x ∈ R1(a) | {x} Z {y}}.

Now, given Ay and Bx such that {x} Z {y}, we
claim that |Ay| = |Bx|. (Note that Ay and Bx are
finite due to the image-finiteness condition in the
statement of the theorem.) Indeed, as {a} Z {b}
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and Ay ⊆ R1(a), by definition of g-bisimulation we
must be able to find a B ⊆ R2(b) such that Ay Z B.
As Z is a g-bisimulation, for any y′ ∈ B, there is an
x′ ∈ Ay such that {x′} Z {y′}. By definition of Ay,
it holds that {x′} Z {y}. Recall that {x} Z {y}
by assumption. By Lemma 3.5, Z is difunctional,
and hence we have that {x} Z {y′}, which means
that y′ ∈ Bx. As y′ was chosen arbitrarily in B, we
have that B ⊆ Bx. Hence, |Ay| = |B| ≤ |Bx|. By a
symmetric argument, we also have that |Bx| ≤ |Ay|.
Thus |Ay| = |Bx| as claimed, and we can then form
a bijection from Ay to Bx. The difunctionality of Z
guarantees us that for any x′ ∈ Ay and y′ ∈ Bx, we
have that {x′} Z {y′}, and thus any such bijection
will respect the relation Z.

Using a similar reasoning, we also see that if
x1, x2 ∈ Ay, then Bx1 = Bx2 . Since every x ∈
R1(a) is in Ay for some y ∈ R2(b), it turns out that
{Ay}y∈R2(b) forms a partition of R1(a). Similarly,
{Bx}x∈R1(a) forms a partition of R2(b).

Let x1, . . . , x` be representatives of the sets in the
partition {Ay}y∈R2(b), and let y1, . . . , yk be repre-
sentatives of the sets in the partition {Bx}x∈R1(a).
We claim that ` = k. Indeed, for each i ∈ {1, . . . , `},
there is some ji ∈ {1, . . . , k} such that {xi} Z {yji}.
(Pick the representative of Bxi as yji .) More-
over, if {xi1} Z {yj} and {xi2} Z {yj}, for some
i1, i2 ∈ {1, . . . , `} and j ∈ {1, . . . , k}, then i1 = i2.
Therefore ` ≤ k. By a symmetric argument, we
have that k ≤ ` also holds, and therefore ` = k
as claimed. It follows that the function mapping
each i ∈ {1, . . . , `} to ji ∈ {1, . . . , k} is a bijection.
Hence, we can form a Z-respecting bijection from
R1(a) to R2(b) by ‘pasting together’ the bijections
from Ayji to Bxi , for i ∈ {1, . . . , `}. �

Corollary 3.4 and Theorem 3.6 together show
that, over image-finite Kripke frames, r-bisimilarity
and g-bisimilarity coincide. This completes the
proof of Theorem 3.1.

4. A proof via coalgebras and modal logic

This section proves that graded and resource
bisimilarity coincide using a route that involves
logic and the Hennessy-Milner Property [2, 10].
The Hennessy-Milner Property essentially says that
two states satisfy the same set of formulas in a
suitable logic if and only if they are ‘bisimilar’.
For resource bisimilarity, we will employ coalgebraic
modal logic for the finite multiset functor, and for
graded bisimilarity we will employ graded modal

logic. Although the settings are superficially differ-
ent, these logics are fundamentally the same.

Coalgebras for the finite multiset functor are
identified with multigraphs, which we call multi-
frames in order to draw a parallel with the Kripke
frames we have used so far. For this reason, we de-
fine in Section 4.1 resource bisimulation in the mul-
tiframe setting and show that the resource bisim-
ilarities for Kripke frames and for multiframes co-
incide. In Section 4.1.1, we show that, for the fi-
nite multiset functor, coalgebraic bisimilarity and
behavioral equivalence coincide. In Section 4.1.2,
we prove that resource bisimilarity on multiframes
coincides with coalgebraic bisimilarity for the fi-
nite multiset functor. In Section 4.2, we present
graded modal logic and coalgebraic modal logic
for the finite multiset functor, and we establish
the Hennessy-Milner property for the coalgebraic
modal logic with respect to resource bisimilarity
by way of coalgebraic bisimilarity and behavioral
equivalence. Finally in Section 4.2.1, we complete
the proof by establishing that the Hennessy-Milner
property holds for graded modal logic over the class
of image-finite Kripke frames modulo g-bisimilarity.
For reader’s convenience, we depict these relation-
ships in the following diagram:

�� ��Kripke r-bisim
OO

4.1

��

�� ��g-bisim
OO

4.2.1

���� ��multi r-bisim
OO

4.1.2

��

�� ��same graded fml
OO

4.2

���� ��coalg bisim
OO

4.1.1

��

�� ��same coalg fml

�� ��behave eq
vv

4.2

66mmmmmmmmmmmm

4.1. R-bisimulation on multiframes
The coalgebras we will involve in Section 4.1.1 are

multigraphs (which we call multiframes), that is, di-
rected graphs with N-weighted edges. A multiframe
is a structure M = (S,Σ), where S is a countable
set and Σ is a set of functions σs : S → N for each
s ∈ S. Note that Σ can be characterized by a func-
tion from S×S to N, which generalizes a binary re-
lation that can be characterized by a function from
S × S to {0, 1}. When visualizing a multiframe as
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a directed graph with weighted edges, we call each
s′ for which σs(s′) > 0 a successor of s. A pointed
multiframe is a pair (M, s), where M = (S,Σ) is
a multiframe, and s ∈ S. We now define resource
bisimulation for multiframes.

Definition 4.1. Given multiframes M1 = (S1,Σ1)
and M2 = (S2,Σ2), a relation R⊆ S1 × S2 is an
r-bisimulation iff whenever (s1, s2) ∈R, there is a
bijective function f from

⋃
s∈S1
{(s, n) | 1 ≤ n ≤

σs11 (s)} to
⋃
s∈S2
{(s, n) | 1 ≤ n ≤ σs22 (s)}, such

that s R t whenever f(s, n) = (t,m). R-bisimilarity
between M1 and M2 is the largest r-bisimulation be-
tween M1 and M2, which is obtained by taking the
union of all r-bisimulations. We say that (M1, s1)
and (M2, s2) are r-bisimilar if there exists an r-
bisimulation between M1 and M2 that relates s1
with s2.

This definition, which will be shown to match the
‘matrix property’ that will be discussed in Section
4.1.2, says that two states are related by a bisimula-
tion if each successor of one is matched with a suc-
cessor of the other that is related to the first by the
bisimulation. The requirement that the function
f be a bijection takes care of handling the weight
(or multiplicity) of the edges properly. This will be
highlighted by Proposition 4.3 to follow.

We now relate r-bisimilarity on multiframes with
r-bisimilarity for Kripke frames. To do so, we must
relate multiframes with Kripke frames. A Kripke
frame can easily be viewed as a multiframe where
σs(s′) ∈ {0, 1}. A multiframe can be transformed
in a bisimilarity preserving way into a Kripke frame
using the following method, which we call the Krip-
keization.

Definition 4.2 (Kripkeization). Given a multi-
frame M = (S,Σ), the Kripkeization of M , written
K(M), is the Kripke frame (K(S), R), where

• K(S) =
⋃
s∈S{(s, n) | n ∈ N, 1 ≤ n ≤

supa∈S{1, σa(s)}}.

• R = {((s, n), (t,m)) | (s, n) ∈ K(s), 1 ≤ m ≤
σs(t)}.

Proposition 4.3. Pointed multiframes (M, s) and
(N, t) are r-bisimilar (according to Definition 4.1)
if and only if (K(M), (s, 1)) and (K(N), (t, 1)) are
r-bisimilar (according to Definition 2.1).

Proof Suppose R is r-bisimilarity between M =
(A,Σ) and N = (B, T ), and that s R t. Let R̂ be

defined by

R̂ = {((s,m), (t, n)) ∈ K(A)×K(B) | s R t}.

We claim that R̂ is an r-bisimulation. Observe
first that (s, 1)R̂(t, 1) holds by definition. If
(s,m)R̂(t, n), then s R t and there is a bijective
function f :

⋃
a∈A{(a, n) | 1 ≤ n ≤ σs(a)} →⋃

b∈B{(b, n) | 1 ≤ n ≤ τ t(b)}, such that whenever
f(a, n) = (b,m), a R b. But then (a, n)R̂(b,m),
and f also applies to Definition 2.1. Thus if s and t
are r-bisimilar (via R), then so are (s, 1) and (t, 1)
(via R̂).

Suppose conversely that R is r-bisimilarity be-
tween K(M) = (K(A), R) and K(N) = (K(B), S),
and that (s, 1) R (t, 1). Define R as

R = {(s, t) ∈ A×B | ∃m,n. (s,m) R (t, n)}.

We show that R is an r-bisimulation. If sRt, then
for some m,n we have (s,m) R (t, n). But then
there is a bijection f : R(s,m) → S(t, n) such
that (a, j) R (b, k) whenever f(a, j) = (b, k). Then
aRb. Recall that R(s,m) =

⋃
a∈A{(a, n) | 1 ≤ n ≤

σs(a)} and S(t, n) =
⋃
b∈B{(b, n) | 1 ≤ n ≤ τ t(b)}.

Hence the function f applies to Definition 4.1. Thus
if (s, 1) and (t, 1) are r-bisimilar, then s and t are
also r-bisimilar. �

4.1.1. Finite multiset functor, coalgebraic bisimu-
lation, and behavioral equivalence

We now relate r-bisimilarity on multiframes with
the notion of behavioral equivalence induced by the
finite multiset functor, which we define below. In
order to prove that r-bisimilarity coincides with be-
havioral equivalence, we proceed in two steps. In
this section, we prove that the behavioral equiva-
lence and the coalgebraic bisimilarity induced by
the finite multiset functor coincide. In Section
4.1.2, we then show that r-bisimilarity coincides
with coalgebraic bisimilarity.

Given any structure S with a 0 element, the sup-
port of a function f : X → S, written supp(f), is
the set {x ∈ X | f(x) 6= 0} of all elements that do
not map to 0.

Definition 4.4 (Finite Multiset Functor).
The finite multiset functor is the functor
B : Set → Set mapping a set X to the set B(X)
of all functions σ : X → N (N = {0, 1, . . .}) with
finite support supp(σ), and mapping all morphisms
f : X → Y to the morphism Bf : B(X) → B(Y )
for which Bfσ : y 7→

∑
{σ(x) : f(x) = y} for each

y ∈ Y . (Note that if y 6∈ f [X], then Bfσ(y) = 0.)
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Definition 4.5 (Weak pullback). Given func-
tions f : B → D and g : C → D, a weak pullback
is a pair of functions h : A → B and k : A → C,
such that g ◦ k = h ◦ f and whenever f(b) = g(c)
for some b ∈ B and c ∈ C, there exists an a ∈ A
such that h(a) = b and k(a) = c. This is depicted
by a diagram called a weak pullback square:

A
k //___

h

���
�
� C

g

��
B

f
// D

Definition 4.6 (Preserving weak pullbacks).
A functor F : Set → Set preserves weak pullbacks
if the image of a weak pullback square under F is
also a weak pullback square.

The following proposition can be proved using a
minor adaptation of Example 3.5 in [13]. For com-
pleteness, we present the proof here.

Proposition 4.7. The finite multiset functor B
preserves weak pullbacks.

Proof Suppose we have a weak pullback square as
in Definition 4.5. It is easy to see that Bf ◦ Bh =
Bg ◦ Bk. Now, let σ ∈ B(B) and τ ∈ B(C) be such
that Bfσ = Bgτ . Our aim is to find some α ∈ B(A),
such that (Bh)α = σ and (Bk)α = τ . Pick a d ∈ D.
Let {b1, . . . , bm} = f−1[d], and let {c1, . . . , cn} =
g−1[d]. Finally for 1 ≤ i ≤ m and 1 ≤ j ≤ n,
let {a1

ij , . . . , a
`
ij} = h−1[bi] ∩ k−1[cj ]. We define α

on the atij in any way such that
∑`
t=1 α(atij) = rij ,

where rij comes from applying an integer version of
the Row/Column Theorem (Theorem 3.6 in [13]),
which we present as follows.

The integer version of the above-mentioned
Row/Column Theorem states that if
p1, . . . , pm, q1, . . . , qn ∈ N are such that∑

1≤i≤m pi =
∑

1≤j≤n qj , then for each 1 ≤ i ≤ m
and 1 ≤ j ≤ n, there exists rij ∈ N, such that∑

1≤j≤n

rij = pi, for 1 ≤ i ≤ m, and

∑
1≤i≤m

rij = qj , for 1 ≤ j ≤ n.

Here the pi are values σ(bi), and the qj are values
τ(cj).

The proof of the integer version of the
Row/Column Theorem is similar to the one in [13],

but with a variation on the inductive step to avoid
non-integer values. The induction is on m+ n. Let
pµ = min1≤i≤m pi and qν = min1≤j≤n qj . With-
out loss of generality, suppose pµ ≤ qν . Then
we set rµν = pµ, rµj = 0 for j 6= ν. To find
the rest of the rij , apply the induction hypothesis
to the p1, . . . , pµ−1, pµ+1, pm, and q′1, . . . q

′
n, where

q′ν = qν − pµ and q′j = qj for j 6= ν. �

Given an endofunctor F : Set → Set, an F -
coalgebra is a pair X = (A,α) consisting of a set X
and a morphism α : A→ FA. A coalgebraic homo-
morphism between F -coalgebras (A,α) and (B, β)
is a map ϕ such that β ◦ ϕ = F (ϕ) ◦ α:

A
ϕ //

α

��

B

β

��
FA

Fϕ
// FB

Definition 4.8 (Coalgebraic bisimulation).
A bisimulation between F -coalgebras (A,α) and
(B, β) is a relation R ⊆ A × B, such that there is
a morphism δ : R → FR, such that the projections
π1 : R → A and π2 : R → B are homomorphisms.
States x ∈ A and y ∈ B are bisimilar if there exists
a bisimulation R between (A,α) and (B, β), such
that (x, y) ∈ R.

A

α

��

R
π1oo π2 //

δ

���
�
� B

β

��
FA FR

Fπ1oo Fπ2 // FB

Definition 4.9 (Behavioral equivalence).
Given F -coalgebras (A,α) and (B, β) and states
x ∈ A and y ∈ B, we say x and y are behaviorally
equivalent if there exist a coalgebra (C, γ), and
morphisms f : A → C and g : B → C, such that
f(x) = g(y).

(A,α)

f $$HHHHHHHHH
(B, β)

g
zzvvvvvvvvv

(C, γ)

Behavioral equivalence implies bisimilarity when
the functor preserves weak pullbacks (Proposition
1.2.2 in Kurz [11]). Thus this holds for the multi-
set functor, as the multiset functor preserves weak
pullbacks by Proposition 4.7.

7



A final coalgebra is a coalgebra (A,α), such that
for every coalgebra (B, β) there is a unique coal-
gebraic homomorphism ϕ from (A,α) to (B, β). If
a final coalgebra exists, then bisimilarity implies
behavioral equivalence; indeed, the map from the
bisimulation to the final coalgebra factors through
the projection maps. It is well known that an ω-
accessible set functor has a final coalgebra—see,
e.g., [1]. (An ω-accessible functor is a functor that
preserves all ω-directed colimits.) It is straightfor-
ward to check that the finite multiset functor B is
ω-accessible, and hence has a final coalgebra. Thus,
for this functor, behavioral equivalence coincides
with coalgebraic bisimilarity.

4.1.2. Matrix Property
The name for the property defined in the follow-

ing definition (which comes from Lemma 5.5 of [9])
is particular to this paper.

Definition 4.10 (Matrix Property). Given
multiframes (A,Σ) and (B, T ), we say that a
relation R⊆ A×B satisfies the matrix property if
for every (a, b) ∈R, there exists an |A|× |B|-matrix
(mx,y) with entries from N such that

1. all but finitely many mx,y are 0,
2. mx,y 6= 0 implies (x, y) ∈ R,
3. for each x, σa(x) =

∑
{mx,y | y ∈ B}, and

4. for each y, τ b(y) =
∑
{mx,y | x ∈ A}.

A relation R satisfies the matrix property if and
only if it is an r-bisimulation on multiframes. The
existence of a matrix mx,y for the pair (a, b) in
Definition 4.10 corresponds to the existence of the
function f : {

⋃
x∈A{(x, n) | 1 ≤ n ≤ σa(x)} →⋃

y∈B{(y, n) | 1 ≤ n ≤ τ b(y)} in Definition 4.1.
Each entry mx,y represents the number of integers
n ≤ σa(x) for which f(x, n) = (y, k) for some k.

Furthermore, according to Lemma 5.5 in [9], a
relation R satisfying the matrix property is an F-
coalgebraic bisimulation, where F is a set functor
mapping a set X to a set of functions with finite
support from X to a monoid. We recall that a
monoid is a triple (S, ?, 0), where S is a set and ?
is an associative binary operation on S that treats
0 ∈ S as the identity element. For the monoid
N = (N,+, 0), the functor F maps each set X to
the set of functions σ : X → N with finite support.
Note that F is the multiset functor B. By way of
the matrix property, two states are r-bisimilar on
multiframes if and only if they are B-coalgebraically
bisimilar, and by the previous section, they are be-
haviorally equivalent.

4.2. Logic and the Hennessy-Milner property

The language LG of graded modal logic is given
by the following BNF:

ϕ ::= > | ¬ϕ | ϕ ∧ ϕ | ♦nϕ (n ∈ N) .

The semantics of LG can be defined on Kripke
frames using a satisfaction relation between pointed
Kripke frames and formulas, where a pointed
Kripke frame is a pair (F, s), with F being a Kripke
frame and s a state in F .

• (F, s) |= > always

• (F, s) |= ¬ϕ if and only if (F, s) 6|= ϕ (where 6|=
is the complement of |=)

• (F, s) |= ϕ ∧ ψ if and only if (F, s) |= ϕ and
(F, s) |= ψ

• (F, s) |= ♦nϕ if and only if there are at least n
states t such that sRt and (F, t) |= ϕ

We have the following derived formula: �nϕ ≡
¬♦n¬ϕ, which states that fewer than n related
states satisfy ¬ϕ. For example, �1⊥ is satisfied
by (F, s) if state s has no successor. The operators
�1 and ♦1 are the usual modal operators � and ♦.

The semantics can be defined on multiframes us-
ing a relation between pointed multiframes and for-
mulas:

• (M, s) |= ♦nϕ if and only if
∑
{σs(t) | (M, t) |=

ϕ} ≥ n.

Here, the derived formula �nϕ is true at (M, s) iff∑
{σs(t) | (M, t) |= ¬ϕ} < n. In what follows, we

simply say that a formula is true at a state s of a
(multi)frame when the (multi)frame is understood
from the context.

Define a sequence of predicate liftings λnX : 2 →
2◦B (with 2 being the contravariant powerset func-
tor), that maps each set A ⊆ X according to

A 7→ {σ ∈ B(X) |
∑
x 6∈A

σ(x) < n}.
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We see that this is a natural transformation, for
given f : X → Y , and A ⊆ Y ,

(Bf)−1(λnY (A)) =

(Bf)−1[{σ ∈ B(Y ) |
∑
y 6∈A

σ(y) < n}] =

{σ ∈ B(X) |
∑
y 6∈A

Bfσ(y) < n} =

{σ ∈ B(X) |
∑

x6∈f−1[A]

σ(x) < n} =

λnX(f−1[A]).

The first equality is from the definition of λnY .
The second is from the definition of Bf−1. The
third is from the definition of B and the fact that
X \ f−1[A] = f−1[Y \ A]. The fourth is from the
definition of λnX .

We now define a coalgebraic semantics for LG
over a B-coalgebra X = (A,α) by

• (X, s) |= �nϕ if and only α(s) ∈ λnX [[ϕ]], where
[[ϕ]] = {t | (X, t) |= ϕ}.

By identifying B-coalgebras with multiframes, one
can observe that the coalgebraic semantics for �n

matches the multiframe semantics: �nϕ is true at
s if the number of connections from s to points t
not in [[ϕ]] is less than n (where the connections are
given by either σs(t) in the multiframe or values
α(s)(t) in the case of the coalgebra).

By Definition 7 in [15], the set {λnX}n∈N of pred-
icate liftings is separating if, for every set X, any
multiset σ ∈ B(X) can be uniquely determined by
the set

{(λnX , A) | n ∈ N, A ⊆ X,σ ∈ λnX(A)}.

We also see that the set {λnX}n∈N is separating,
since given a multiset σ : X → N, we can check
for each x ∈ X that {(λn, A) | A = X − {x}, n ∈
N, λnX(A)} = {(λnX , X − {x}) | n > σ(x)}.

Thus applying Theorem 141 and Example 37(1)
in [15], we see that the coalgebraic modal logic
for {λnX}n∈N is expressive. According to [15], a B-
coalgebraic language is expressive if ‘logical indis-
tinguishability under LG implies behavioral equiv-
alence.’

1This theorem requires the functor to be ω-accessible. As
the finite multiset functor B is ω-accessible, the theorem can
be applied.

The converse of this statement is immediate from
the fact that the homomorphisms preserve the se-
mantics, meaning that if f is a homomorphism
from (A,α) to (B, β), then for every formula ϕ and
x ∈ A, (A, x) |= ϕ if and only if (B, f(x)) |= ϕ.
Written another way, [[ϕ]]A = f−1[[[ϕ]]B ], where the
subscript indicates the set the semantic function
maps to; this is the form that will be used in the
induction hypothesis. To see that indeed the lan-
guage preserves the semantics, we argue by induc-
tion on the structure of the formula. The base case
and the boolean connective cases are simple. For
the inductive step �nϕ, we proceed as follows:

s ∈ [[�nϕ]]A ⇔ α(s) ∈ λn[[ϕ]]A

⇔
∑

x6∈[[ϕ]]A

α(s)(x) < n

⇔1

∑
y 6∈[[ϕ]]B

(Bf ◦ α(s))(y) < n

⇔2

∑
y 6∈[[ϕ]]B

β(f(s))(y) < n

⇔ β(f(s)) ∈ λn[[ϕ]]B
⇔ f(s) ∈ [[�nϕ]]B .

The equivalence⇔1 makes use of the induction hy-
pothesis ([[ϕ]]A = f−1[[[ϕ]]B ]) and the definition of
Bσ. The equivalence⇔2 makes use of the definition
of homomorphism.

Summarizing, the behavioral equivalence associ-
ated with the finite multiset functor, and therefore
r-bisimilarity, coincides with logical indistinguisha-
bility under LG.

4.2.1. G-bisimilarity and the Hennessy-Milner
property

In light of the development so far, to complete the
alternative proof of Theorem 3.1, it suffices to show
that the Hennessy-Milner property holds for graded
modal logic over the class of image-finite Kripke
frames modulo g-bisimilarity. The Hennessy-Milner
property is proved in [7] for ω-saturated models.
We adapt this proof for image-finite Kripke frames.
For a state w in a Kripke frame, let L(w) be the set
of formulas true at w.

Proposition 4.11. Let M1 and M2 be image-finite
Kripke frames, and let w1 ∈ X1 and w2 ∈ X2. Then
L(w1) = L(w2) if and only if w1 and w2 are g-
bisimilar.

Proof The proof from right to left is a simple in-
duction on the formulas (Proposition 3.3 in [7]).

9



From left to right, assume that L(w1) = L(w2).
We define a g-bisimulation relation Z as follows:
X1 Z X2 if and only if each of the following holds:

• |X1| = |X2|,

• for each x1 ∈ X1, there is x2 ∈ X2 such that
L(x1) = L(x2), and

• for each x2 ∈ X2, there is x1 ∈ X1 such that
L(x1) = L(x2).

It remains to check that Z is indeed a g-
bisimulation relation. First Z is non-empty, since
L(w1) = L(w2), and hence {w1} Z {w2}.

Condition 1(a) of Definition 2.4 is immediate
from the definitions. Conditions 1(b) holds due the
the following argument. Suppose X1 Z X2, then
for every x1 ∈ X1, there is an x2 ∈ X2, such that
L(x1) = L(x2). But then {x1} Z {x2}, thus satis-
fying Condition 1(b). The proof for condition 1(c)
is similar.

For Condition 2(a), suppose {x1} Z {x2}. Let
X1 ⊆ R1(x1) be chosen, and suppose toward a
contradiction that there is no X2 ⊆ R2(x2), such
that X1 Z X2. Suppose X1 = {a1, . . . , an},
and for a suitable permutation π of {1, . . . , n}, let
{aπ1 , . . . , aπk} be a maximal set for which L(aπi) 6=
L(aπj ), but for each ai, there is some j, such that
L(ai) = L(aπj ). Let σ : {aπ1 , . . . , aπk} → N be the
multiset for which σ(aπi) = |{j | L(aπi) = L(aj)}|.
By our assumption, there must be a j, such that
there is no subset Y ⊆ R2(x2) of size σ(aπj ), where
for each y ∈ Y , L(y) = L(aπj ). For each of the
finitely many Y ⊆ R2(x2) of size σ(aπj ), let ϕY be
a formula that is true at aπj , but not at every y ∈ Y .
Then ♦σ(aπj )

∧
{ϕY : Y ⊆ R2(x2), |Y | = σ(aπj )} is

true at x1, but not at x2, contradicting our initial
assumption that {x1} Z {x2}. Thus there is an
X2 ⊆ R2(x2), such that X1 Z X2. A similar argu-
ment shows that for every X2 ⊆ R2(x2), there is an
X1 ⊆ R1(x1), such that X1 Z X2, thus giving us
Condition 2(b). �

This completes the alternative proof of Theorem
3.1.

5. The Hennessy-Milner property fails with-
out image-finiteness

Consider the following two frames:

1. F1 = (S1, R1), with S1 = N ∪ {0} and with
R1 = {(n + 1, n) | n ≥ 1} ∪ {(0, n) | n ≥ 1},
and

2. F2 = (S2, R2), with S2 = S1 ∪ {ω} and R2 =
R1 ∪ {(0, ω), (ω, ω)}.

We observe that (F1, 0) and (F2, 0) are neither r-
bisimilar nor g-bisimilar according to a natural ex-
tension of g-bisimulation to infinite sets. Indeed,
suppose that R is an r-bisimulation in which 0 R 0.
Then using Proposition 2.2, there is a bijection
i : R1(0) → R2(0) in which for each a ∈ R1(0),
(a, i(a)) ∈R. Then some a ∈ R1(0) maps under i
to ω. But a |= ♦a1�1⊥, while ω 6|= ♦a1�1⊥, where
♦0

1ϕ = ϕ and ♦a+1
1 ϕ = ♦1♦a1ϕ. As the submod-

els generated from a and ω are image-finite, the
Hennessy-Milner Property holds in those submod-
els. Thus a and ω cannot be bisimilar, contradicting
the definition of R.

Suppose now that we were to relax the constraint
on g-bisimulation in Definition 2.4 that only finite
sets can be paired, and suppose for a contradiction
that Z were such a bisimulation between F1 and
F2 in which {0} Z {0}. Then R1(0) Z R2(0), in
which case given ω, there must be an a ∈ S1, such
that {a} Z {ω}, which cannot be true for the same
reason as given for the r-bisimulation.

We next observe that (F1, 0) and (F2, 0) satisfy
the same graded model logic formulas, and hence
cannot have the Hennessy-Milner Property. This is
argued by induction on the structure of the formula.
The key step is ϕ = ♦nψ. Clearly any n states in
S1 can be matched by the identical states in S2.
But conversely, were ω among the n states chosen
in S2, we can safely select any state m in S1 greater
than the modal (nesting) depth of ψ. We appeal to
the fact that the submodels generated from (S1,m)
and from (S2, ω) are non-branching, on which set-
ting graded modal logic and ordinary modal logic
coincide. Furthermore, modal logic formulas with
modal depth k cannot distinguish states that are
no fewer than k relational steps from a terminating
state (Theorem 32 in [8]).

By Corollary 3.4, r-bisimilarity is included in g-
bisimilarity over arbitrary Kripke frames. We have
moreover shown that the converse inclusion holds
over image-finite Kripke frames. We do not know
whether g-bisimilarity is included in r-bisimilarity
over arbitrary Kripke frames.
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