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Relationship between classical and quantum
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(In)compatibilities between measurements

» State space = Hilbert space
Sharp measurements = projection-valued measures
Jointly measurable = commute pairwise
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» State space = Hilbert space
Sharp measurements = projection-valued measures
Jointly measurable = commute pairwise

» (In)compatibilities form graph:
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=el Theorem: Any graph can be realised
s M as PVMs on a Hilbert space.
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(In)compatibilities between measurements

» State space = Hilbert space
Unsharp measurements = positive operator-valued measures
Jointly measurable = marginals of larger POVM

» (In)compatibilities now form abstract simplicial complex:
/r\s
p q

Theorem: Any abstract simplicial
8 complex can be realised as POVMs
- on a Hilbert space.
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Quantum logic

Subsetsofaset

Subspaces of a Hilbert space
orthomodular lattice not distributive

biscuit
coffee

tea

nothing

However: fine when within orthogonal basis
(Boolean subalgebra)
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Doctrine of classical concepts

“However far the phenomena transcend the
scope of classical physical explanation, the ac-
count of all evidence must be expressed in classi-
cal terms.... The argument is simply that by the
word experiment we refer to a situation where
we can tell others what we have done and what
we have learned and that, therefore, the account
of the experimental arrangements and of the re-
sults of the observations must be expressed in
unambiguous language with suitable application
of the terminology of classical physics.”
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Kochen—Specker

» Quantum measurement is probabilistic
(state «|0) 4 3|1) gives outcome 0 with probability |a|?)
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Kochen—Specker

» Quantum measurement is probabilistic
(state «|0) 4 3|1) gives outcome 0 with probability |a|?)

» Could this be due to lack of knowledge on our part?
» A hidden variable for a state is an assignment of a consistent

outcome to any possible measurement.

& M Theorem: hidden variables cannot exist
‘ (if dimension > 3.)

13/44
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Order theory
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Piecewise structures

A piecewise widget is a widget that forgot
operations between “incompatible” elements.
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Piecewise structures

A piecewise widget is a widget that forgot
operations between “incompatible” elements.

> A piecewise Boolean algebra is a set B with:
» a reflexive binary relation ® C B?;
» (partial) binary operations V,A: ® — B;
» a (total) function —: B — B;
such that every S C B with > C ® is contained ina T C B
with 72 C ® where (T, A,V, ) is a Boolean algebra.
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Piecewise structures

A piecewise widget is a widget that forgot
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Piecewise structures

A piecewise widget is a widget that forgot
operations between “incompatible” elements.

Theorem: There is no piecewise morphism
Proj(C3) — {0,1}
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Classical viewpoints

» Given a piecewise Boolean algebra P,
consider C(P) = {B C P Boolean subalgebra},
the collection of classical viewpoints.

e JiiN
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Classical viewpoints

» Given a piecewise Boolean algebra P,
consider C(P) = {B C P Boolean subalgebra},
the collection of classical viewpoints.

e JiiN

; : ' Theorem: Can reconstruct P
g as a piecewise algebra.
= colimC(P))
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Piecewise Boolean algebras

» for a piecewise Boolean algebra P,

C(P) = collection of Boolean subalgebras of P.
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Piecewise Boolean algebras

» for a piecewise Boolean algebra P,
C(P) = collection of Boolean subalgebras of P.

ZININ

Theorem: C(P) determines P
(PP < C(P)=C(P))
shape of parts determines whole

17/ 44



Piecewise Boolean algebras

/I\/I\
\\|//

Theorem: If a poset L:

>

>
>
>
>

has directed suprema;

has nonempty infima;

each element is a supremum of compact ones;
each downset is cogeometric with a modular atom;

each element of height n < 3 covers (";rl) elements;

then L = C(P) for a piecewise Boolean algebra P;
“L is a spectral poset”.
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Piecewise Boolean algebras

| Lemma: If L is a spectral poset, there is a functor
F: L — Bool that preserves subobjects;
“F is a spectral diagram”.

(C(F(x)) = |Ix, and P =colimF)
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Piecewise Boolean algebras

“F is a spectral diagram”.

Lemma: If L is a spectral poset, there is a functor
3 F: L — Bool that preserves subobjects;
(C(F(x)) = |Ix, and P =colimF)
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Piecewise Boolean algebras

Theorem: The following categories are equivalent:

> piecewise Boolean algebras;
> spectral diagrams;
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Piecewise Boolean algebras

Theorem: The following categories are equivalent:

> piecewise Boolean algebras;
> spectral diagrams;
» oriented spectral posets.

JINC S IN
ccRefc)e
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Part Il

Operator algebra
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Algebras of observables

Observables are primitive, states are derived
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Algebras of observables

Observables are primitive, states are derived

s\vi C*-algebras
‘ x-algebra of operators that is closed

AW*-algebras
abstract/algebraic version of W*-algebra

von Neumann algebras / \W*-algebras
x-algebra of operators that is weakly closed

22 /44



Algebras of observables

Observables are primitive, states are derived

s\vi C*-algebras
‘ x-algebra of operators that is closed

AW*-algebras
abstract/algebraic version of W*-algebra

von Neumann algebras / \W*-algebras
x-algebra of operators that is weakly closed

Jordan algebras
JC/JW-algebras: real version of above

22 /44



Classical mechanics

» If X is a state space,
then C(X) = {f: X — C} is an operator algebra.
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Classical mechanics

» If X is a state space,
then C(X) = {f: X — C} is an operator algebra.

B
. @La“. Theorem: Every commutative operator algebra

ﬁ‘ is of this form.

» Can recover states (as maps C(X) — C): “spectrum”
Constructions on states transfer to observables:

X+Y = C(X)e C(Y)
XxY—CX)eC(Y

Equivalence of categories: states determine everything
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Quantum mechanics

» If H is a Hilbert space,
then B(H) = {f: H — H} is an operator algebra.
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Quantum mechanics

» If H is a Hilbert space,
then B(H) = {f: H — H} is an operator algebra.

%‘*

S

‘ # Theorem: Every operator algebra
;ﬁ‘}\ embeds into one of this form.
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Quantum mechanics

» If H is a Hilbert space,
then B(H) = {f: H — H} is an operator algebra.

. ﬁf-\ ) ﬁ Theorem: Every operator algebra

@J\ embeds into one of this form.
| S
» Recover states?

Do states determine everything?
“Noncommutative spectrum”?
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Quantum state spaces?
{ '\

‘ﬁ certain convex sets (states)

sheaves over locales (prime ideals)
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Quantum state spaces?

commutative ~__SPetUm

state spaces
|
!

operator algebras <————

Y
quantum

operator algebras— — — —
P & ~ state spaces
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Quantum state spaces? No!

commutative spectrum

_—
state spaces
|

I
| G

operator algebras <————

Y
¢ leeb quantum
operator algebras— — = — >
P g F state spaces

. . |

= Theorem: If G is continuous,

'? : then F degenerates.
R
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= N :
e

L That's right. (F(M,) =0 for n > 3.)

26 /44



Quantum state spaces? No!?

commutative spectrum

_—
state spaces
|

I
| G

operator algebras <————

Y
¢ leeb quantum
operator algebras— — = — >
P g F state spaces

= Theorem: If G is continuous,
.? & then F degenerates.
R

/".

\% That's right. (F(M,,) = () for n > 3.)

» So G better not be continuous
So quantum state spaces must be radically different ...
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Classical viewpoints again

» |nvariant that circumvents the obstruction:

Given an operator algebra A,
consider C(A) = {C C A commutative subalgebra},

the collection of classical viewpoints.

Ve JiaN
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consider C(A) = {C C A commutative subalgebra},

the collection of classical viewpoints.

Ve JiaN

| Theorem: Can reconstruct A
as a piecewise algebra.
(A = colimC(A))
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Piecewise structures again

. Q'} A piecewise widget is a widget that forgot
"\i? W operations between noncommuting elements.
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Piecewise structures again

A piecewise widget is a widget that forgot
operations between noncommuting elements.

» A piecewise complex *-algebra is a set A with:
> a reflexive binary relation ® C A?;
» (partial) binary operations +,-: ©® — A;
» (total) functions x: A— Aand -: Cx A— A
such that every S C A with S2 C ® is contained ina T C A
with T2 C ® where (T, +,-, %) is a commutative *-algebra.
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Piecewise structures again

A piecewise widget is a widget that forgot
operations between noncommuting elements.

» A piecewise complex *-algebra is a set A with:
> a reflexive binary relation ® C A?;
» (partial) binary operations +,-: ©® — A;
» (total) functions x: A— Aand -: Cx A— A
such that every S C A with S2 C ® is contained ina T C A
with T2 C ® where (T, +,-, %) is a commutative *-algebra.

! Theorem: Can reconstruct A
as a piecewise algebra.
(A = colimC(A))

» How much is this? Quite a bit:
» Quantum foundations: Bohrification
» Quantum logic: Bohrification
» Quantum information theory: entropy
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Contextual entropy

Define: contextual entropy of state p of A
function E,: C(A) — R,
C +— Shannon entropy H(tr(p —))
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Contextual entropy

Define: contextual entropy of state p of A
function E,: C(A) — R,
C +— Shannon entropy H(tr(p —))

Theorem: contextual entropy generalises
von Neumann entropy

S(p) = min{E,(C) | C € C(A)}
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Contextual entropy

Define: contextual entropy of state p of A
function E,: C(A) — R,
C +— Shannon entropy H(tr(p —))

Theorem: contextual entropy generalises
von Neumann entropy
S(p) = min{E,(C) | € € C(A)}

Theorem: E, determines p!
(in dim > 3)

20 /44



Bohrification: history

. with classical
viewpoints

attempts at dynamics
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Bohrification: idea

» Consider “contextual sets”
assignment of set S(C) to each classical viewpoint C € C(A)
such that C C D implies S(C) C S(D)
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Bohrification: idea

» Consider “contextual sets”
assignment of set S(C) to each classical viewpoint C € C(A)
such that C C D implies S(C) C S(D)

» They form a topos 7 (A)!
category whose objects behave a lot like sets
in particular, it has a logic of its own!

» There is one canonical contextual set A
A(C)=C

‘ Theorem: T (A) believes that A is a
582 commutative operator algebral

31/44



Bohrification: caveats

Change rules to make quantum system classical. Price:
» No proof by contradiction. (P —P)
» No choice. (S; # 0 = [[, 5 #10)
» No real numbers. (completions of @ differ)
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Theorem: A determined by state space

(within T(A))
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Bohrification: quantum state space?

Change rules to make quantum system classical. Price:
» No proof by contradiction. (P —P)
» No choice. (S; # 0 = [[, 5 #10)
» No real numbers. (completions of @ differ)

Theorem: A determined by state space

(within T(A))

Circumvents obstruction ...
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Piecewise structures: how far can we get?

Theorem: If C(A) = C(B),
then A = B as Jordan algebras
(for W*-algebras without I term)

Theorem: If C(A) = C(B),
then A =2 B as piecewise Jordan algebras
(for all C*-algebras except C? and M)
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Piecewise structures: how far can we get?

Theorem: If C(A) = C(B),
then A = B as Jordan algebras
(for W*-algebras without I term)

Theorem: If C(A) = C(B),
then A =2 B as piecewise Jordan algebras
(for all C*-algebras except C? and M)

e

» So need to add more information to C(A) ...

33/44



Part Il

Interaction between classical viewpoints
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Five stages of grief

Established psychology:
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Five stages of grief

Established psychology:

1. Denial: “These are not groups!”
2. Anger: "Why are you destroying my groups? | hate you!”
3. Bargaining: “At least think in terms of commutative groups?”

4. Depression: | wasted my life on the wrong groups!”
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Five stages of grief

1.
2.
3.
4.
5.

Established psychology:

Denial: “These are not groups!”

Anger: “Why are you destroying my groups? | hate you!”
Bargaining: “At least think in terms of commutative groups?”
Depression: | wasted my life on the wrong groups!”

Acceptance: “Noncommutative groups are cool!”
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Five stages of grief

Established psychology:

Denial: “These are not groups!”

Anger: “Why are you destroying my groups? | hate you!”
Bargaining: “At least think in terms of commutative groups?”
Depression: | wasted my life on the wrong groups!”

Acceptance: “Noncommutative groups are cool!”

Stockholm syndrome: “Commutative groups? Don't care!”

35/ 44



Active lattices: idea

operator
algebra

classical
viewpoints

36 /44



Active lattices: idea

operator
algebra

projections

lattice

» Replace classical viewpoints C(A)
by projection lattice {p ¢ A| p* = p = p°}
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operator
algebra
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lattice group

» Replace classical viewpoints C(A)
by projection lattice {p ¢ A| p* = p = p°}

» Any x-algebra has unitary group {v ¢ A | ™ =1 = uu}
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» Any x-algebra has unitary group {v ¢ A | ™ =1 = uu}
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Active lattices: idea

operator
algebra
W \
unitaries
actlve
lattice <——— —————group
lattice

» Replace classical viewpoints C(A)
by projection lattice {p ¢ A| p* = p = p?}

» Any x-algebra has unitary group {v ¢ A | uu™ =1 = u"u}

» Unitaries act on projections (u - p = upu™)
Projections inject into unitaries (p — 1 — 2p)
So projections act on themselves!

36 /44



Symmetries

( p

projections

—

o~

1-2p

self-adjoint unitaries

b - "
symmetries
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Symmetries

> & - —

2 Af
o
p 1-— 2p

projections >~  self-adjoint unitaries
="symmetries”

» Sym(A) is subgroup of unitaries generated by symmetries
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Symmetries

3 [ W
p — 1—-2p

~Y

projections >~  self-adjoint unitaries
="symmetries”

» Sym(A) is subgroup of unitaries generated by symmetries

» if A type |1, then Sym(A) = { all symmetries }
» if Atypelp/I3/..., then Sym(A) ={ u|det(u)®>=1}
» if Atype loo/Il/1l, then Sym(A) = { all unitaries }
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Active lattices

» An action of a (piecewise) group G on a (piecewise) lattice P
is a homomorphism G — Aut(P)
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Active lattices

» An action of a (piecewise) group G on a (piecewise) lattice P
is a homomorphism G — Aut(P)

» An active lattice is:

a piecewise AW*-algebra A

a lattice structure P on the projections
a group structure G on the symmetries
an action of G on P

vV vy VvYyy
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Active lattices

» An action of a (piecewise) group G on a (piecewise) lattice P
is a homomorphism G — Aut(P)

» An active lattice is:

» a complete orthomodular lattice P
» a group G generated by P
» an action of G on P
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Active lattices

» An action of a (piecewise) group G on a (piecewise) lattice P
is a homomorphism G — Aut(P)

> An active lattice is: every AW*-algebra A has one:
» a complete orthomodular lattice P Proj(A)
» a group G generated by P Sym(A)
» an action of G on P u-p= upu*

Theorem: lts active lattice determines A
(full and faithful functor)
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Matrix algebras

» If Ais an operator algebra, then so is M,(A)
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Matrix algebras

» If Ais an operator algebra, then so is M,(A)
» “All AW*-algebras are matrix algebras”

If A type I, then A= M,(C)
If A type loo/lloo/I1l, then A 2 M,(A)
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Matrix algebras

» If Ais an operator algebra, then so is M,(A)

» “All AW*-algebras are matrix algebras”
If A type I, then A= M,(C)
If A type loo/lloo /111, then A = M, (A)

Theorem: Classical viewpoints in
M, (A) are diagonal.

(VC € C(Mp(A)) Ju € UM,(A)): uCu* diagonal)

39 /44



Matrix algebras: projections

“a. ' Even if A has few projections, M,(A) has lots!
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Matrix algebras: projections

“a' ' Even if A has few projections, M,(A) has lots!

> '- 1 () = (1+aa*)"t (14+aa")7la
| Pi\a) = a*(1 +aa*)"! a*(1+aa*)la

aV p12(a)

1
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Matrix algebras: projections

. ' Even if A has few projections, M,(A) has lots!

~"‘."‘ oy A4aa)t (1+aa*)la
Pii(a) = <a*(1 +aa*)"t A (1+ aa*)1a>

aV p12(a)

1

» These vector projections encode algebraic structure of Al
pij(a+ b) = polynomial in pji(a), pik(b), pjk(c), - -
pij(ab) = polynomial in pj(a), pkj(b), ...
pij(a*) = polynomial in pji(a),...

40/ 44



Active lattices determine operator algebras

W Theorem: lts active lattice determines A
(full and faithful functor)
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Active lattices determine operator algebras

» Lemma: If f: Proj(M,(A)) — Proj(M,(B)) equivariant,
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Active lattices determine operator algebras

» Lemma: If f: Proj(M,(A)) — Proj(M,(B)) equivariant,
then f(pj(a)) = pjj(¢(a)) for some ¢: A — B.

» Lemma: The vector projections generate Proj(M,(A)).

Theorem: lIts active lattice determines A
(full and faithful functor)
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Active lattices determine operator algebras

v

Lemma: If f: Proj(M,(A)) — Proj(M,(B)) equivariant,
then f(pj(a)) = pjj(¢(a)) for some ¢: A — B.

v

Lemma: The vector projections generate Proj(M,(A)).

v

Recall: “All AW*-algebras are matrix algebras”

Theorem: lIts active lattice determines A
(full and faithful functor)
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Active lattices determine operator algebras

v

Lemma: If f: Proj(M,(A)) — Proj(M,(B)) equivariant,
then f(pj(a)) = pjj(¢(a)) for some ¢: A — B.

v

Lemma: The vector projections generate Proj(M,(A)).

v

Recall: “All AW*-algebras are matrix algebras”

-

. ¥=<§ Theorem: lts active lattice determines A
? (full and faithful functor)
W

What is the logic of such things ... 77

v
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Conclusion

“Knowing a quantum system =
all classical viewpoints + switching between them”
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Conclusion

“Knowing a quantum system =
all classical viewpoints + switching between them”

v

Physics = dynamics and kinematics in one

v

Quantum logic = modal / dynamic

v

Logic of contextuality

. Foundational language
Programming language

v

Noncommutative topology, database theory, comput‘avbility

42 /44
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Part V

Bonus: abstract nonsense
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Abstract quantum logic

» Topos logic not operational since “set-based”:
propositions are “contextual subsets”
(In particular, they form a distributive lattice)
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Abstract quantum logic

» Topos logic not operational since “set-based”:
propositions are “contextual subsets”
(In particular, they form a distributive lattice)

Propositions are closed subspaces

| 4 . . .
(orthomodular projection lattice)
Quantum logic in abstract categories
> including “modal” quantifier 3

(“dagger kernel categories” like Hilb or Rel)
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Abstract operator algebras

» An abstract operator algebra (Frobenius algebra) in a tensor
category is a morphism 4 : A® A — A satisfying

AT A Q7 1A
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in Hilb: (concrete) operator algebras
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Abstract operator algebras

» An abstract operator algebra (Frobenius algebra) in a tensor
category is a morphism 4 : A® A — A satisfying

AT A Q7 1A

in Hilb: (concrete) operator algebras

48 (caveats in infinite dimension)

in Rel: groupoids
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Possibilistic quantum logic

Abstract quantum logic in Rel
is classical modal logic
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Abstract quantum logic in Rel
is classical modal logic
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In Rel: projections = subgroupoids
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is classical modal logic
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Possibilistic quantum logic

Abstract quantum logic in Rel

> . . .
is classical modal logic
.: AN
> ‘a‘ In Rel: projections = subgroupoids
A . . C
. classical commutative distributive

quantum  noncommutative © nondistributive

» Can we reconstruct an abstract operator algebra
from its category of classical viewpoints?
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