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(In)compatibilities between measurements

I State space = Hilbert space
Sharp measurements = projection-valued measures
Jointly measurable = commute pairwise

I (In)compatibilities form graph:

p q

r s

t

I
Theorem: Any graph can be realised
as PVMs on a Hilbert space.
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(In)compatibilities between measurements

I State space = Hilbert space
Unsharp measurements = positive operator-valued measures
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I

Theorem: Any abstract simplicial
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on a Hilbert space.
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Quantum logic

((((((((hhhhhhhhSubsets of a set
Subspaces of a Hilbert space

orthomodular lattice

0

1

a a⊥ b b⊥
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Quantum logic
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Quantum logic

((((((((hhhhhhhhSubsets of a set
Subspaces of a Hilbert space
orthomodular lattice not distributive

tea

coffee
biscuit

nothing

However: fine when within orthogonal basis
(Boolean subalgebra)
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Doctrine of classical concepts

“However far the phenomena transcend the
scope of classical physical explanation, the ac-
count of all evidence must be expressed in classi-
cal terms.... The argument is simply that by the
word experiment we refer to a situation where
we can tell others what we have done and what
we have learned and that, therefore, the account
of the experimental arrangements and of the re-
sults of the observations must be expressed in
unambiguous language with suitable application
of the terminology of classical physics.”
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Kochen–Specker

I Quantum measurement is probabilistic
(state α|0〉+ β|1〉 gives outcome 0 with probability |α|2)

I Could this be due to lack of knowledge on our part?

I A hidden variable for a state is an assignment of a consistent
outcome to any possible measurement.

Theorem: hidden variables cannot exist
(if dimension ≥ 3.)
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Part I

Order theory
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Piecewise structures

I
A piecewise widget is a widget that forgot
operations between “incompatible” elements.

I
Theorem: There is no piecewise morphism

Proj(C3)→ {0, 1}
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Classical viewpoints

I Given a piecewise Boolean algebra P,
consider C(P) = {B ⊆ P Boolean subalgebra},
the collection of classical viewpoints.

I

Theorem: Can reconstruct P
as a piecewise algebra.
(P ∼= colim C(P))
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Piecewise Boolean algebras

I for a piecewise Boolean algebra P,
C(P) = collection of Boolean subalgebras of P.

• •

• • • • •

•

I

Theorem: C(P) determines P
(P ∼= P ′ ⇐⇒ C(P) ∼= C(P ′))
shape of parts determines whole

17 / 44



Piecewise Boolean algebras

I for a piecewise Boolean algebra P,
C(P) = collection of Boolean subalgebras of P.

• •

• • • • •

•

I

Theorem: C(P) determines P
(P ∼= P ′ ⇐⇒ C(P) ∼= C(P ′))
shape of parts determines whole

17 / 44



Piecewise Boolean algebras

• •

• • • • •

•

Theorem: If a poset L:

I has directed suprema;

I has nonempty infima;

I each element is a supremum of compact ones;

I each downset is cogeometric with a modular atom;

I each element of height n ≤ 3 covers
(
n+1

2

)
elements;

then L ∼= C(P) for a piecewise Boolean algebra P;
“L is a spectral poset”.
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Piecewise Boolean algebras

Lemma: If L is a spectral poset, there is a functor
F : L→ Bool that preserves subobjects;
“F is a spectral diagram”.
(C(F (x)) ∼= ↓ x , and P = colimF )

• •

• • • • •

•

F→
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Piecewise Boolean algebras

Theorem: The following categories are equivalent:

I piecewise Boolean algebras;

I spectral diagrams;

I oriented spectral posets.

• •

± ± ± ± ±

•
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Part II

Operator algebra
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Algebras of observables

Observables are primitive, states are derived

C*-algebras
∗-algebra of operators that is closed

AW*-algebras
abstract/algebraic version of W*-algebra

von Neumann algebras / W*-algebras
∗-algebra of operators that is weakly closed

Jordan algebras
JC/JW-algebras: real version of above

22 / 44



Algebras of observables

Observables are primitive, states are derived

C*-algebras
∗-algebra of operators that is closed

AW*-algebras
abstract/algebraic version of W*-algebra

von Neumann algebras / W*-algebras
∗-algebra of operators that is weakly closed

Jordan algebras
JC/JW-algebras: real version of above

22 / 44



Algebras of observables

Observables are primitive, states are derived

C*-algebras
∗-algebra of operators that is closed

AW*-algebras
abstract/algebraic version of W*-algebra

von Neumann algebras / W*-algebras
∗-algebra of operators that is weakly closed

Jordan algebras
JC/JW-algebras: real version of above

22 / 44



Classical mechanics

I If X is a state space,
then C (X ) = {f : X → C} is an operator algebra.

I
Theorem: Every commutative operator algebra

is of this form.

I Can recover states (as maps C (X )→ C): “spectrum”
Constructions on states transfer to observables:

X + Y 7→ C (X )⊗ C (Y )

X × Y 7→ C (X )⊕ C (Y

Equivalence of categories: states determine everything
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Quantum mechanics
I If H is a Hilbert space,

then B(H) = {f : H → H} is an operator algebra.

I
Theorem: Every operator algebra
embeds into one of this form.

I Recover states?
Do states determine everything?
“Noncommutative spectrum”?
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Quantum state spaces?

certain convex sets (states)

sheaves over locales (prime ideals)

quantales (maximal ideals)

orthomodular lattices (projections)

q-spaces (projections of enveloping W*-algebra)
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Quantum state spaces?

No!?

commutative
operator algebras

spectrum //
'

� _

��

state spacesoo

G

���
�
�
�

operator algebras

F

//_____ quantum
state spaces

I
Theorem: If G is continuous,

then F degenerates.

I That’s right. (F (Mn) = ∅ for n ≥ 3.)

I So G better not be continuous
So quantum state spaces must be radically different ...
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Classical viewpoints again

I Invariant that circumvents the obstruction:
Given an operator algebra A,
consider C(A) = {C ⊆ A commutative subalgebra},
the collection of classical viewpoints.

I

Theorem: Can reconstruct A
as a piecewise algebra.
(A ∼= colim C(A))
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Piecewise structures again

I
A piecewise widget is a widget that forgot
operations between noncommuting elements.

I A piecewise complex *-algebra is a set A with:
I a reflexive binary relation � ⊆ A2;
I (partial) binary operations +, · : � → A;
I (total) functions ∗ : A→ A and · : C× A→ A;

such that every S ⊆ A with S2 ⊆ � is contained in a T ⊆ A
with T 2 ⊆ � where (T ,+, ·, ∗) is a commutative ∗-algebra.

I

Theorem: Can reconstruct A
as a piecewise algebra.
(A ∼= colim C(A))

I How much is this? Quite a bit:
I Quantum foundations: Bohrification
I Quantum logic: Bohrification
I Quantum information theory: entropy
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Contextual entropy

Define: contextual entropy of state ρ of A
function Eρ : C(A)→ R,
C 7→ Shannon entropy H(tr(ρ −))

Theorem: contextual entropy generalises
von Neumann entropy
S(ρ) = min{Eρ(C ) | C ∈ C(A)}

Theorem: Eρ determines ρ!
(in dim ≥ 3)
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Bohrification: history

reformulate
with classical
viewpoints

general topos approach to physics

Bohrification

attempts at dynamics
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Bohrification: idea

I Consider “contextual sets”
assignment of set S(C ) to each classical viewpoint C ∈ C(A)
such that C ⊆ D implies S(C ) ⊆ S(D)

I They form a topos T (A)!
category whose objects behave a lot like sets
in particular, it has a logic of its own!

I There is one canonical contextual set A
A(C ) = C

I
Theorem: T (A) believes that A is a
commutative operator algebra!
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Bohrification: caveats

Change rules to make quantum system classical. Price:

I No proof by contradiction. (P ∨ ¬P)

I No choice. (Si 6= ∅ =⇒
∏

i Si 6= ∅)
I No real numbers. (completions of Q differ)

No matter!

Theorem: A determined by state space
(within T (A))

Circumvents obstruction ...
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Piecewise structures: how far can we get?

Theorem: If C(A) ∼= C(B),
then A ∼= B as Jordan algebras
(for W*-algebras without I2 term)

Theorem: If C(A) ∼= C(B),
then A ∼= B as piecewise Jordan algebras
(for all C*-algebras except C2 and M2)

I So need to add more information to C(A) ...
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Part III

Interaction between classical viewpoints
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Five stages of grief

Established psychology:

1. Denial: “These are not groups!”

2. Anger: “Why are you destroying my groups? I hate you!”

3. Bargaining: “At least think in terms of commutative groups?”

4. Depression: “I wasted my life on the wrong groups!”

5. Acceptance: “Noncommutative groups are cool!”

6. Stockholm syndrome: “Commutative groups? Don’t care!”
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Active lattices: idea

operator
algebra

projections

xxqqqqqqqqqqqqqqq

classical
viewpoints

lattice
active
lattice

group

I Replace classical viewpoints C(A)
by projection lattice {p ∈ A | p∗ = p = p2}

I Any ∗-algebra has unitary group {u ∈ A | uu∗ = 1 = u∗u}

I Unitaries act on projections (u · p = upu∗)
Projections inject into unitaries (p 7→ 1− 2p)

So projections act on themselves!
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Symmetries

I 7−→

p 7−→ 1− 2p
projections ∼= self-adjoint unitaries

=“symmetries”

I Sym(A) is subgroup of unitaries generated by symmetries

I if A type I1, then Sym(A) = { all symmetries }
I if A type I2/I3/..., then Sym(A) = { u | det(u)2 = 1 }
I if A type I∞/II/III, then Sym(A) = { all unitaries }
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Active lattices

I An action of a (piecewise) group G on a (piecewise) lattice P
is a homomorphism G → Aut(P)

I An active lattice is:

every AW*-algebra A has one:
I a complete orthomodular lattice P
I a group G generated by P
I an action of G on P
I an action of G on P

I
Theorem: Its active lattice determines A

(full and faithful functor)
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Matrix algebras

I If A is an operator algebra, then so is Mn(A)

I “All AW*-algebras are matrix algebras”
If A type In, then A ∼= Mn(C )
If A type I∞/II∞/III, then A ∼= Mn(A)

I

Theorem: Classical viewpoints in
Mn(A) are diagonal.

(∀C ∈ C(Mn(A)) ∃u ∈ U(Mn(A)) : uCu∗ diagonal)
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Matrix algebras: projections

I

Even if A has few projections, Mn(A) has lots!

pij(a) =

(
(1 + aa∗)−1 (1 + aa∗)−1a
a∗(1 + aa∗)−1 a∗(1 + aa∗)−1a

)

a

1

p12(a)

I These vector projections encode algebraic structure of A!
pij(a + b) = polynomial in pij(a), pik(b), pjk(c), . . .
pij(ab) = polynomial in pik(a), pkj(b), . . .
pij(a

∗) = polynomial in pji (a), . . .
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Active lattices determine operator algebras

I Lemma: If f : Proj(Mn(A))→ Proj(Mn(B)) equivariant,
then f (pij(a)) = pij(ϕ(a)) for some ϕ : A→ B.

I Lemma: The vector projections generate Proj(Mn(A)).

I Recall: “All AW*-algebras are matrix algebras”

I
Theorem: Its active lattice determines A

(full and faithful functor)

I What is the logic of such things ... ??
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Conclusion

“Knowing a quantum system =
all classical viewpoints + switching between them”

I Physics = dynamics and kinematics in one

I Quantum logic = modal / dynamic

I Logic of contextuality

I
Foundational language
Programming language

I Noncommutative topology, database theory, computability ...
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Part V

Bonus: abstract nonsense
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Abstract quantum logic

I Topos logic not operational since “set-based”:
propositions are “contextual subsets”
(In particular, they form a distributive lattice)

I
Propositions are closed subspaces
(orthomodular projection lattice)

I

Quantum logic in abstract categories
including “modal” quantifier ∃
(“dagger kernel categories” like Hilb or Rel)
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Abstract operator algebras

I An abstract operator algebra (Frobenius algebra) in a tensor
category is a morphism : A⊗ A→ A satisfying

= = = =

I in Hilb: (concrete) operator algebras

(caveats in infinite dimension)

I in Rel: groupoids
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Possibilistic quantum logic

I
Abstract quantum logic in Rel
is classical modal logic

I In Rel: projections = subgroupoids

I
classical

quantum
=

commutative

noncommutative
6= distributive

nondistributive

I Can we reconstruct an abstract operator algebra
from its category of classical viewpoints?
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