The many classical faces of quantum structures

Chris Heunen
University of Oxford

March 31, 2014

Classical faces of quantum structures

I Introduction
II Order theory
III Operator algebra
IV Interaction

Relationship between classical and quantum

Relationship between classical and quantum

Relationship between classical and quantum

Relationship between classical and quantum

Relationship between classical and quantum

(In)compatibilities between measurements

- State space $=$ Hilbert space

Sharp measurements $=$ projection-valued measures Jointly measurable $=$ commute pairwise

(In)compatibilities between measurements

- State space $=$ Hilbert space

Sharp measurements $=$ projection-valued measures Jointly measurable $=$ commute pairwise

- (In)compatibilities form graph:

(In)compatibilities between measurements

- State space $=$ Hilbert space

Sharp measurements $=$ projection-valued measures Jointly measurable $=$ commute pairwise

- (In)compatibilities form graph:

Theorem: Any graph can be realised as PVMs on a Hilbert space.

(In)compatibilities between measurements

- State space $=$ Hilbert space

Unsharp measurements = positive operator-valued measures Jointly measurable $=$ marginals of larger POVM

(In)compatibilities between measurements

- State space $=$ Hilbert space

Unsharp measurements = positive operator-valued measures Jointly measurable $=$ marginals of larger POVM

- (In)compatibilities now form hypergraph:

(In)compatibilities between measurements

- State space $=$ Hilbert space

Unsharp measurements = positive operator-valued measures Jointly measurable $=$ marginals of larger POVM

- (In)compatibilities now form abstract simplicial complex:

Theorem: Any abstract simplicial complex can be realised as POVMs on a Hilbert space.

Quantum logic

Subsets of a set
Subspaces of a Hilbert space

Quantum logic

Subsets of a set
Subspaces of a Hilbert space orthomodular lattice

Quantum logic

Subsets of a set
Subspaces of a Hilbert space orthomodular lattice not distributive

Quantum logic

Subsets a set
Subspaces of a Hilbert space orthomodular lattice not distributive

Quantum logic

Subsets of a set
Subspaces of a Hilbert space orthomodular lattice not distributive

However: fine when within orthogonal basis (Boolean subalgebra)

Doctrine of classical concepts

"However far the phenomena transcend the scope of classical physical explanation, the account of all evidence must be expressed in classical terms.... The argument is simply that by the word experiment we refer to a situation where we can tell others what we have done and what we have learned and that, therefore, the account of the experimental arrangements and of the results of the observations must be expressed in unambiguous language with suitable application of the terminology of classical physics."

Kochen-Specker

- Quantum measurement is probabilistic (state $\alpha|0\rangle+\beta|1\rangle$ gives outcome 0 with probability $|\alpha|^{2}$)

Kochen-Specker

- Quantum measurement is probabilistic (state $\alpha|0\rangle+\beta|1\rangle$ gives outcome 0 with probability $|\alpha|^{2}$)
- Could this be due to lack of knowledge on our part?

Kochen-Specker

- Quantum measurement is probabilistic (state $\alpha|0\rangle+\beta|1\rangle$ gives outcome 0 with probability $|\alpha|^{2}$)
- Could this be due to lack of knowledge on our part?
- A hidden variable for a state is an assignment of a consistent outcome to any possible measurement.

Kochen-Specker

- Quantum measurement is probabilistic (state $\alpha|0\rangle+\beta|1\rangle$ gives outcome 0 with probability $|\alpha|^{2}$)
- Could this be due to lack of knowledge on our part?
- A hidden variable for a state is an assignment of a consistent outcome to any possible measurement.

Theorem: hidden variables cannot exist (if dimension ≥ 3.)

Part I

Order theory

Piecewise structures

A piecewise widget is a widget that forgot operations between "incompatible" elements.

Piecewise structures

A piecewise widget is a widget that forgot operations between "incompatible" elements.

- A piecewise Boolean algebra is a set B with:
- a reflexive binary relation $\odot \subseteq B^{2}$;
- (partial) binary operations $\vee, \wedge: \odot \rightarrow B$;
- a (total) function $\neg: B \rightarrow B$;
such that every $S \subseteq B$ with $S^{2} \subseteq \odot$ is contained in a $T \subseteq B$ with $T^{2} \subseteq \odot$ where (T, \wedge, \vee, \neg) is a Boolean algebra.

Piecewise structures

A piecewise widget is a widget that forgot operations between "incompatible" elements.

- Every projection lattice gives a piecewise Boolean algebra:

Piecewise structures

$-$
A piecewise widget is a widget that forgot operations between "incompatible" elements.

- Every projection lattice gives a piecewise Boolean algebra:

Theorem: There is no piecewise morphism

$$
\operatorname{Proj}\left(\mathbb{C}^{3}\right) \rightarrow\{0,1\}
$$

Classical viewpoints

- Given a piecewise Boolean algebra P, consider $\mathcal{C}(P)=\{B \subseteq P$ Boolean subalgebra $\}$, the collection of classical viewpoints.

Classical viewpoints

- Given a piecewise Boolean algebra P, consider $\mathcal{C}(P)=\{B \subseteq P$ Boolean subalgebra $\}$, the collection of classical viewpoints.

Theorem: Can reconstruct P as a piecewise algebra. $(P \cong \operatorname{colim} \mathcal{C}(P))$

Piecewise Boolean algebras

- for a piecewise Boolean algebra P, $\mathcal{C}(P)=$ collection of Boolean subalgebras of P.

Piecewise Boolean algebras

- for a piecewise Boolean algebra P, $\mathcal{C}(P)=$ collection of Boolean subalgebras of P.

Theorem: $\mathcal{C}(P)$ determines P
$\left(P \cong P^{\prime} \Longleftrightarrow \mathcal{C}(P) \cong \mathcal{C}\left(P^{\prime}\right)\right)$ shape of parts determines whole

Piecewise Boolean algebras

Theorem: If a poset L :

- has directed suprema;
- has nonempty infima;
- each element is a supremum of compact ones;
- each downset is cogeometric with a modular atom;
- each element of height $n \leq 3$ covers $\binom{n+1}{2}$ elements; then $L \cong \mathcal{C}(P)$ for a piecewise Boolean algebra P; " L is a spectral poset".

Piecewise Boolean algebras

Lemma: If L is a spectral poset, there is a functor $F: L \rightarrow$ Bool that preserves subobjects; " F is a spectral diagram". $(\mathcal{C}(F(x)) \cong \downarrow x$, and $P=\operatorname{colim} F)$

Piecewise Boolean algebras

Lemma: If L is a spectral poset, there is a functor $F: L \rightarrow$ Bool that preserves subobjects; " F is a spectral diagram".

$$
(\mathcal{C}(F(x)) \cong \downarrow x, \text { and } P=\operatorname{colim} F)
$$

Piecewise Boolean algebras

Lemma: If L is a spectral poset, there is a functor $F: L \rightarrow$ Bool that preserves subobjects; " F is a spectral diagram".

$$
(\mathcal{C}(F(x)) \cong \downarrow x, \text { and } P=\operatorname{colim} F)
$$

Piecewise Boolean algebras

Theorem: The following categories are equivalent:

- piecewise Boolean algebras;
- spectral diagrams;

Piecewise Boolean algebras

Theorem: The following categories are equivalent:

- piecewise Boolean algebras;
- spectral diagrams;
- oriented spectral posets.

Part II

Operator algebra

Algebras of observables

Observables are primitive, states are derived

Algebras of observables

Observables are primitive, states are derived

C*-algebras
*-algebra of operators that is closed

AW*-algebras
abstract/algebraic version of W^{*}-algebra
von Neumann algebras / W*-algebras
*-algebra of operators that is weakly closed

Algebras of observables

Observables are primitive, states are derived

C*-algebras
*-algebra of operators that is closed

AW*-algebras
abstract/algebraic version of \underline{W}^{*}-algebra
von Neumann algebras / W*-algebras
*-algebra of operators that is weakly closed

Jordan algebras
JC/JW-algebras: real version of above

Classical mechanics

- If X is a state space, then $C(X)=\{f: X \rightarrow \mathbb{C}\}$ is an operator algebra.

Classical mechanics

- If X is a state space, then $C(X)=\{f: X \rightarrow \mathbb{C}\}$ is an operator algebra.

Theorem: Every commutative operator algebra is of this form.

Classical mechanics

- If X is a state space, then $C(X)=\{f: X \rightarrow \mathbb{C}\}$ is an operator algebra.

Theorem: Every commutative operator algebra is of this form.

- Can recover states (as maps $C(X) \rightarrow \mathbb{C}$): "spectrum" Constructions on states transfer to observables:

$$
\begin{aligned}
& X+Y \mapsto C(X) \otimes C(Y) \\
& X \times Y \mapsto C(X) \oplus C(Y
\end{aligned}
$$

Equivalence of categories: states determine everything

Quantum mechanics

- If H is a Hilbert space, then $B(H)=\{f: H \rightarrow H\}$ is an operator algebra.

Quantum mechanics

- If H is a Hilbert space, then $B(H)=\{f: H \rightarrow H\}$ is an operator algebra.

Theorem: Every operator algebra embeds into one of this form.

Quantum mechanics

- If H is a Hilbert space, then $B(H)=\{f: H \rightarrow H\}$ is an operator algebra.

Theorem: Every operator algebra embeds into one of this form.

- Recover states?

Do states determine everything?
"Noncommutative spectrum"?

Quantum state spaces?

certain convex sets (states)

sheaves over locales (prime ideals)

quantales (maximal ideals)

orthomodular lattices (projections)

q-spaces (projections of enveloping W^{*}-algebra)

Quantum state spaces?

Quantum state spaces? No!

Theorem: If G is continuous, then F degenerates.

Quantum state spaces? No!

Theorem: If G is continuous, then F degenerates.

That's right. $\left(F\left(\mathbb{M}_{n}\right)=\emptyset\right.$ for $n \geq 3$. $)$

Quantum state spaces? No!?

Theorem: If G is continuous, then F degenerates.
$>$

That's right. $\left(F\left(\mathbb{M}_{n}\right)=\emptyset\right.$ for $n \geq 3$. $)$

- So G better not be continuous

So quantum state spaces must be radically different ...

Classical viewpoints again

- Invariant that circumvents the obstruction:

Given an operator algebra A, consider $\mathcal{C}(A)=\{C \subseteq A$ commutative subalgebra $\}$, the collection of classical viewpoints.

Classical viewpoints again

- Invariant that circumvents the obstruction:

Given an operator algebra A, consider $\mathcal{C}(A)=\{C \subseteq A$ commutative subalgebra $\}$, the collection of classical viewpoints.

Theorem: Can reconstruct A as a piecewise algebra. ($A \cong \operatorname{colim} \mathcal{C}(A)$)

Piecewise structures again

A piecewise widget is a widget that forgot operations between noncommuting elements.

Piecewise structures again

A piecewise widget is a widget that forgot operations between noncommuting elements.

- A piecewise complex ${ }^{*}$-algebra is a set A with:
- a reflexive binary relation $\odot \subseteq A^{2}$;
- (partial) binary operations $+, \cdot: \odot \rightarrow A$;
- (total) functions $*: A \rightarrow A$ and $:: \mathbb{C} \times A \rightarrow A$;
such that every $S \subseteq A$ with $S^{2} \subseteq \odot$ is contained in a $T \subseteq A$ with $T^{2} \subseteq \odot$ where $(T,+, \cdot, *)$ is a commutative $*$-algebra.

Piecewise structures again

A piecewise widget is a widget that forgot operations between noncommuting elements.

- A piecewise complex *-algebra is a set A with:
- a reflexive binary relation $\odot \subseteq A^{2}$;
- (partial) binary operations,$+ \cdot \odot \rightarrow A$;
- (total) functions $*: A \rightarrow A$ and $\cdot: \mathbb{C} \times A \rightarrow A$;
such that every $S \subseteq A$ with $S^{2} \subseteq \odot$ is contained in a $T \subseteq A$ with $T^{2} \subseteq \odot$ where $(T,+, \cdot, *)$ is a commutative $*$-algebra.

Theorem: Can reconstruct A as a piecewise algebra. ($A \cong \operatorname{colim} \mathcal{C}(A)$)

- How much is this? Quite a bit:
- Quantum foundations: Bohrification
- Quantum logic: Bohrification
- Quantum information theory: entropy

Contextual entropy

Define: contextual entropy of state ρ of A function $E_{\rho}: \mathcal{C}(A) \rightarrow \mathbb{R}$, $C \mapsto$ Shannon entropy $H(\operatorname{tr}(\rho-))$

Contextual entropy

Define: contextual entropy of state ρ of A function $E_{\rho}: \mathcal{C}(A) \rightarrow \mathbb{R}$, $C \mapsto$ Shannon entropy $H(\operatorname{tr}(\rho-))$

Theorem: contextual entropy generalises von Neumann entropy $S(\rho)=\min \left\{E_{\rho}(C) \mid C \in \mathcal{C}(A)\right\}$

Contextual entropy

Define: contextual entropy of state ρ of A function $E_{\rho}: \mathcal{C}(A) \rightarrow \mathbb{R}$, $C \mapsto$ Shannon entropy $H(\operatorname{tr}(\rho-))$

Theorem: contextual entropy generalises von Neumann entropy $S(\rho)=\min \left\{E_{\rho}(C) \mid C \in \mathcal{C}(A)\right\}$

Theorem: E_{ρ} determines ρ ! (in $\operatorname{dim} \geq 3$)

Bohrification: history

general topos approach to physics

Bohrification

attempts at dynamics

Bohrification: idea

- Consider "contextual sets"
assignment of set $S(C)$ to each classical viewpoint $C \in \mathcal{C}(A)$ such that $C \subseteq D$ implies $S(C) \subseteq S(D)$

Bohrification: idea

- Consider "contextual sets"
assignment of set $S(C)$ to each classical viewpoint $C \in \mathcal{C}(A)$ such that $C \subseteq D$ implies $S(C) \subseteq S(D)$
- They form a topos $\mathcal{T}(A)$!
category whose objects behave a lot like sets in particular, it has a logic of its own!

Bohrification: idea

- Consider "contextual sets" assignment of set $S(C)$ to each classical viewpoint $C \in \mathcal{C}(A)$ such that $C \subseteq D$ implies $S(C) \subseteq S(D)$
- They form a topos $\mathcal{T}(A)$! category whose objects behave a lot like sets in particular, it has a logic of its own!
- There is one canonical contextual set \underline{A} $\underline{A}(C)=C$

Bohrification: idea

- Consider "contextual sets" assignment of set $S(C)$ to each classical viewpoint $C \in \mathcal{C}(A)$ such that $C \subseteq D$ implies $S(C) \subseteq S(D)$
- They form a topos $\mathcal{T}(A)$! category whose objects behave a lot like sets in particular, it has a logic of its own!
- There is one canonical contextual set \underline{A} $\underline{A}(C)=C$

Theorem: $\mathcal{T}(A)$ believes that \underline{A} is a commutative operator algebra!

Bohrification: caveats

Change rules to make quantum system classical. Price:

- No proof by contradiction. $(P \vee \neg P)$
- No choice. $\left(S_{i} \neq \emptyset \Longrightarrow \prod_{i} S_{i} \neq \emptyset\right)$
- No real numbers. (completions of \mathbb{Q} differ)

Bohrification: caveats

Change rules to make quantum system classical. Price:

- No proof by contradiction. $(P \vee \neg P)$
- No choice. $\left(S_{i} \neq \emptyset \Longrightarrow \prod_{i} S_{i} \neq \emptyset\right)$
- No real numbers. (completions of \mathbb{Q} differ)

No matter!

Theorem: \underline{A} determined by state space (within $\mathcal{T}(A)$)

Bohrification: quantum state space?

Change rules to make quantum system classical. Price:

- No proof by contradiction. $(P \vee \neg P)$
- No choice. $\left(S_{i} \neq \emptyset \Longrightarrow \prod_{i} S_{i} \neq \emptyset\right)$
- No real numbers. (completions of \mathbb{Q} differ)

No matter!

Theorem: \underline{A} determined by state space (within $\mathcal{T}(A)$)

Circumvents obstruction ...

Piecewise structures: how far can we get?

Theorem: If $\mathcal{C}(A) \cong \mathcal{C}(B)$, then $A \cong B$ as Jordan algebras (for W^{*}-algebras without I_{2} term)

Theorem: If $\mathcal{C}(A) \cong \mathcal{C}(B)$, then $A \cong B$ as piecewise Jordan algebras (for all C^{*}-algebras except \mathbb{C}^{2} and M_{2})

Piecewise structures: how far can we get?

Theorem: If $\mathcal{C}(A) \cong \mathcal{C}(B)$, then $A \cong B$ as Jordan algebras (for W^{*}-algebras without I_{2} term)

Theorem: If $\mathcal{C}(A) \cong \mathcal{C}(B)$, then $A \cong B$ as piecewise Jordan algebras (for all C^{*}-algebras except \mathbb{C}^{2} and M_{2})

- So need to add more information to $\mathcal{C}(A) \ldots$

Part III

Interaction between classical viewpoints

Five stages of grief

Five stages of grief

1. Denial:"These are not groups!"

Five stages of grief

Established psychology:

1. Denial:"These are not groups!"
2. Anger: "Why are you destroying my groups? I hate you!"

Five stages of grief

Established psychology:

1. Denial:"These are not groups!"
2. Anger: "Why are you destroying my groups? I hate you!"
3. Bargaining: "At least think in terms of commutative groups?"

Five stages of grief

Established psychology:

1. Denial:"These are not groups!"
2. Anger: "Why are you destroying my groups? I hate you!"
3. Bargaining: "At least think in terms of commutative groups?"
4. Depression: "I wasted my life on the wrong groups!"

Five stages of grief

Established psychology:

1. Denial:"These are not groups!"
2. Anger: "Why are you destroying my groups? I hate you!"
3. Bargaining: "At least think in terms of commutative groups?"
4. Depression: "I wasted my life on the wrong groups!"
5. Acceptance: "Noncommutative groups are cool!"

Five stages of grief

Established psychology:

1. Denial:"These are not groups!"
2. Anger: "Why are you destroying my groups? I hate you!"
3. Bargaining: "At least think in terms of commutative groups?"
4. Depression: "I wasted my life on the wrong groups!"
5. Acceptance: "Noncommutative groups are cool!"
6. Stockholm syndrome: "Commutative groups? Don't care!"

Active lattices: idea

Active lattices: idea

- Replace classical viewpoints $\mathcal{C}(A)$ by projection lattice $\left\{p \in A \mid p^{*}=p=p^{2}\right\}$

Active lattices: idea

- Replace classical viewpoints $\mathcal{C}(A)$ by projection lattice $\left\{p \in A \mid p^{*}=p=p^{2}\right\}$
- Any $*$-algebra has unitary group $\left\{u \in A \mid u u^{*}=1=u^{*} u\right\}$

Active lattices: idea

- Replace classical viewpoints $\mathcal{C}(A)$ by projection lattice $\left\{p \in A \mid p^{*}=p=p^{2}\right\}$
- Any $*$-algebra has unitary group $\left\{u \in A \mid u u^{*}=1=u^{*} u\right\}$
- Unitaries act on projections ($u \cdot p=u p u^{*}$) Projections inject into unitaries $(p \mapsto 1-2 p)$

Active lattices: idea

- Replace classical viewpoints $\mathcal{C}(A)$ by projection lattice $\left\{p \in A \mid p^{*}=p=p^{2}\right\}$
- Any $*$-algebra has unitary group $\left\{u \in A \mid u u^{*}=1=u^{*} u\right\}$
- Unitaries act on projections ($u \cdot p=u p u^{*}$) Projections inject into unitaries $(p \mapsto 1-2 p)$ So projections act on themselves!

Symmetries

Symmetries

- $\operatorname{Sym}(A)$ is subgroup of unitaries generated by symmetries

Symmetries

- $\operatorname{Sym}(A)$ is subgroup of unitaries generated by symmetries
- if A type I_{1}, then
$\operatorname{Sym}(A)=\{$ all symmetries $\}$
- if A type $I_{2} / I_{3} / \ldots$, then $\operatorname{Sym}(A)=\left\{u \mid \operatorname{det}(u)^{2}=1\right\}$
- if A type $I_{\infty} / \mathrm{II} / \mathrm{III}$, then $\operatorname{Sym}(A)=\{$ all unitaries $\}$

Active lattices

- An action of a (piecewise) group G on a (piecewise) lattice P is a homomorphism $G \rightarrow \operatorname{Aut}(P)$

Active lattices

- An action of a (piecewise) group G on a (piecewise) lattice P is a homomorphism $G \rightarrow \operatorname{Aut}(P)$
- An active lattice is:
- a piecewise AW*-algebra A
- a lattice structure P on the projections
- a group structure G on the symmetries
- an action of G on P

Active lattices

- An action of a (piecewise) group G on a (piecewise) lattice P is a homomorphism $G \rightarrow \operatorname{Aut}(P)$
- An active lattice is:
- a complete orthomodular lattice P
- a group G generated by P
- an action of G on P

Active lattices

- An action of a (piecewise) group G on a (piecewise) lattice P is a homomorphism $G \rightarrow \operatorname{Aut}(P)$
- An active lattice is:
every AW*-algebra A has one:
- a complete orthomodular lattice P
- a group G generated by P
- an action of G on P

Active lattices

- An action of a (piecewise) group G on a (piecewise) lattice P is a homomorphism $G \rightarrow \operatorname{Aut}(P)$
- An active lattice is:
every AW^{*}-algebra A has one:
- a complete orthomodular lattice P
- a group G generated by P
- an action of G on P

Theorem: Its active lattice determines A (full and faithful functor)

Matrix algebras

- If A is an operator algebra, then so is $\mathbb{M}_{n}(A)$

Matrix algebras

- If A is an operator algebra, then so is $\mathbb{M}_{n}(A)$
- "All AW*-algebras are matrix algebras"

If A type I_{n}, then $A \cong \mathbb{M}_{n}(C)$
If A type $\mathrm{I}_{\infty} / \mathrm{I}_{\infty} / \mathrm{III}$, then $A \cong \mathbb{M}_{n}(A)$

Matrix algebras

- If A is an operator algebra, then so is $\mathbb{M}_{n}(A)$
- "All AW*-algebras are matrix algebras"

If A type I_{n}, then $A \cong \mathbb{M}_{n}(C)$
If A type $\mathrm{I}_{\infty} / \mathrm{I}_{\infty} / \mathrm{III}$, then $A \cong \mathbb{M}_{n}(A)$

Theorem: Classical viewpoints in $\mathbb{M}_{n}(A)$ are diagonal.

$$
\left(\forall C \in \mathcal{C}\left(\mathbb{M}_{n}(A)\right) \exists u \in U\left(\mathbb{M}_{n}(A)\right): u C u^{*} \text { diagonal }\right)
$$

Matrix algebras: projections

Even if A has few projections, $\mathbb{M}_{n}(A)$ has lots!

Matrix algebras: projections

Even if A has few projections, $\mathbb{M}_{n}(A)$ has lots!

$$
p_{i j}(a)=\left(\begin{array}{cc}
\left(1+a a^{*}\right)^{-1} & \left(1+a a^{*}\right)^{-1} a \\
a^{*}\left(1+a a^{*}\right)^{-1} & a^{*}\left(1+a a^{*}\right)^{-1} a
\end{array}\right)
$$

Matrix algebras: projections

Even if A has few projections, $\mathbb{M}_{n}(A)$ has lots!

$$
p_{i j}(a)=\left(\begin{array}{cc}
\left(1+a a^{*}\right)^{-1} & \left(1+a a^{*}\right)^{-1} a \\
a^{*}\left(1+a a^{*}\right)^{-1} & a^{*}\left(1+a a^{*}\right)^{-1} a
\end{array}\right)
$$

- These vector projections encode algebraic structure of A !

$$
\begin{aligned}
p_{i j}(a+b) & =\text { polynomial in } p_{i j}(a), p_{i k}(b), p_{j k}(c), \ldots \\
p_{i j}(a b) & =\text { polynomial in } p_{i k}(a), p_{k j}(b), \ldots \\
p_{i j}\left(a^{*}\right) & =\text { polynomial in } p_{j i}(a), \ldots
\end{aligned}
$$

Active lattices determine operator algebras

Theorem: Its active lattice determines A (full and faithful functor)

Active lattices determine operator algebras

- Lemma: If $f: \operatorname{Proj}\left(\mathbb{M}_{n}(A)\right) \rightarrow \operatorname{Proj}\left(\mathbb{M}_{n}(B)\right)$ equivariant, then $f\left(p_{i j}(a)\right)=p_{i j}(\varphi(a))$ for some $\varphi: A \rightarrow B$.

Theorem: Its active lattice determines A (full and faithful functor)

Active lattices determine operator algebras

- Lemma: If $f: \operatorname{Proj}\left(\mathbb{M}_{n}(A)\right) \rightarrow \operatorname{Proj}\left(\mathbb{M}_{n}(B)\right)$ equivariant, then $f\left(p_{i j}(a)\right)=p_{i j}(\varphi(a))$ for some $\varphi: A \rightarrow B$.
- Lemma: The vector projections generate $\operatorname{Proj}\left(\mathbb{M}_{n}(A)\right)$.

Theorem: Its active lattice determines A (full and faithful functor)

Active lattices determine operator algebras

- Lemma: If $f: \operatorname{Proj}\left(\mathbb{M}_{n}(A)\right) \rightarrow \operatorname{Proj}\left(\mathbb{M}_{n}(B)\right)$ equivariant, then $f\left(p_{i j}(a)\right)=p_{i j}(\varphi(a))$ for some $\varphi: A \rightarrow B$.
- Lemma: The vector projections generate $\operatorname{Proj}\left(\mathbb{M}_{n}(A)\right)$.
- Recall: "All AW*-algebras are matrix algebras"

Theorem: Its active lattice determines A (full and faithful functor)

Active lattices determine operator algebras

- Lemma: If $f: \operatorname{Proj}\left(\mathbb{M}_{n}(A)\right) \rightarrow \operatorname{Proj}\left(\mathbb{M}_{n}(B)\right)$ equivariant, then $f\left(p_{i j}(a)\right)=p_{i j}(\varphi(a))$ for some $\varphi: A \rightarrow B$.
- Lemma: The vector projections generate $\operatorname{Proj}\left(\mathbb{M}_{n}(A)\right)$.
- Recall: "All AW*-algebras are matrix algebras"

Theorem: Its active lattice determines A (full and faithful functor)

- What is the logic of such things ... ??

Conclusion

"Knowing a quantum system = all classical viewpoints + switching between them"

Conclusion

"Knowing a quantum system = all classical viewpoints + switching between them"

- Physics = dynamics and kinematics in one

Conclusion

"Knowing a quantum system $=$ all classical viewpoints + switching between them"

- Physics $=$ dynamics and kinematics in one
- Quantum logic $=$ modal $/$ dynamic

Conclusion

"Knowing a quantum system $=$ all classical viewpoints + switching between them"

- Physics $=$ dynamics and kinematics in one
- Quantum logic = modal / dynamic
- Logic of contextuality

Conclusion

"Knowing a quantum system $=$ all classical viewpoints + switching between them"

- Physics $=$ dynamics and kinematics in one
- Quantum logic $=$ modal $/$ dynamic
- Logic of contextuality

Foundational language Programming language

Conclusion

"Knowing a quantum system $=$ all classical viewpoints + switching between them"

- Physics $=$ dynamics and kinematics in one
- Quantum logic = modal / dynamic
- Logic of contextuality

Foundational language Programming language

- Noncommutative topology, database theory, computability ...

References

"All joint measurability structures are quantum realizable"
Physical Review Letters, 2014
"Quantum theory realises all joint measuribility graphs"
Physical Review A 89:032121, 2014

"Domain theory in quantum logic"
International Colloquium Automata, Languages, and Programming, 2014
"Characterizing categories of commutative C*-algebras" Communications in Mathematical Physics, 2014

"Extending obstructions to noncommutative spectra"
Theory and Applications of Categories, 2014
"Noncommutativity as a colimit"
Applied Categorical Structures 20(4):393-414, 2012
"A topos for algebraic quantum theory"
Communications in Mathematical Physics 291:63-110, 2009
"The Gelfand spectrum of a noncommutative C*-algebra"
Journal of the Australian Mathematical Society 90:39-52, 2011
"Diagonalizing matrices over AW*-algebras"
Journal of Functional Analysis 264(8):1873-1898, 2013
"Active lattices determine AW*-algebras"
Journal of Mathematical Analysis and Applications 416:289-313, 2014

Part V

Bonus: abstract nonsense

Abstract quantum logic

- Topos logic not operational since "set-based": propositions are "contextual subsets"
(In particular, they form a distributive lattice)

Abstract quantum logic

- Topos logic not operational since "set-based": propositions are "contextual subsets"
(In particular, they form a distributive lattice)
-

Propositions are closed subspaces (orthomodular projection lattice)

Abstract quantum logic

- Topos logic not operational since "set-based": propositions are "contextual subsets"
(In particular, they form a distributive lattice)
$>$

Propositions are closed subspaces (orthomodular projection lattice)

Quantum logic in abstract categories including "modal" quantifier \exists
("dagger kernel categories" like Hilb or Rel)

Abstract operator algebras

- An abstract operator algebra (Frobenius algebra) in a tensor category is a morphism $\underset{\sim}{d}: A \otimes A \rightarrow A$ satisfying

$$
h=\emptyset
$$

$$
C_{Q}^{C}=1
$$

$$
\dot{G}=L_{Q} S_{0}
$$

Abstract operator algebras

- An abstract operator algebra (Frobenius algebra) in a tensor category is a morphism $\underset{\sim}{\text { d }}: A \otimes A \rightarrow A$ satisfying

$\bigoplus_{\rho}^{b}=1$

in Hilb: (concrete) operator algebras

Abstract operator algebras

- An abstract operator algebra (Frobenius algebra) in a tensor category is a morphism $\underset{\sim}{\text { d. }}: A \otimes A \rightarrow A$ satisfying

$\bigoplus_{9}^{b}=1$

in Hilb: (concrete) operator algebras

(caveats in infinite dimension)

in Rel: groupoids

Possibilistic quantum logic

Abstract quantum logic in Rel is classical modal logic

Possibilistic quantum logic

Abstract quantum logic in Rel is classical modal logic

In Rel: projections = subgroupoids

Possibilistic quantum logic

Abstract quantum logic in Rel is classical modal logic

In Rel: projections = subgroupoids

$$
\frac{\text { classical }}{\text { quantum }}=\frac{\text { commutative }}{\text { noncommutative }} \neq \frac{\text { distributive }}{\text { nondistributive }}
$$

Possibilistic quantum logic

Abstract quantum logic in Rel is classical modal logic
-

In Rel: projections = subgroupoids

$$
\frac{\text { classical }}{\text { quantum }}=\frac{\text { commutative }}{\text { noncommutative }} \neq \frac{\text { distributive }}{\text { nondistributive }}
$$

- Can we reconstruct an abstract operator algebra from its category of classical viewpoints?

References

"Introduction to categorical quantum mechanics" Oxford University Press, 2014

"Categories of quantum and classical channels" Quantum Information Processing, 2014
"Compositional quantum logic"
Computation, Logic, Games, and Quantum Foundations: 21-36, 2013

"Relative Frobenius algebras are groupoids" Journal of Pure and Applied Algebra 217:114-124, 2012
" H^{*}-algebras and nonunital Frobenius algebras"
AMS Clifford Lectures 71:1-24, 2010
"Operational theories and categorical quantum mechanics"
Logic and algebraic structures in quantum computing \& information, 2014

"Quantum logic in dagger kernel categories" Order 27(2):177-212, 2010

