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I. Reconstructing QM



Ordered vector spaces

An ordered vector space is a real vector space E (for our
purposes, finite-dimensional) with a designated positive cone
K ⊆ E:

• a, b ∈ K ⇒ a + b ∈ K ;

• a ∈ K ⇒ ta ∈ K for all t ∈ R+;

• K ∩ −K = {0};
• span(K ) = K − K = E.

Define a ≤ b iff b − a ∈ K (so a ≥ 0 iff a ∈ K ).

Notation: K = E+.



Quantum Probability in a Nutshell

H a finite-dimensional complex Hilbert space; E(H) := space of
hermitian operators on H, ordered by the cone E+(H) of positive
operators.

• observables with values in a set S ↔ mapping
a : S → E(H)+ with

∑
s∈S a(s) = 1;

• states ↔ positive normalized linear functional α on E(H).

• composite systems: Given systems represented by H1, H2,
composite system corresponds to H1 ⊗H2.

• Also allowed: direct sums, e.g., E(H1)⊕ E(H2). etc.

Nature takes this seriously — it works!



...But WHY?

Can we motivate this structure?

A Strategy:

1. Start with a very general (and conceptually simple) version of
probability theory

2. Identify quantum probability theory as a special case

3. Add (simple?) constraints in hopes of singling out QM

Success will depend on one’s view of the plausibility and simplicity
of the constraints. (This is part of the fun!)



History

This is a very old idea! For example,

• von Neumann: QM from probabilistic postulates (1927,1929)

• Quantum logic: Birkhoff-von Neumann (1936), Mackey
(1957), Piron-Araki-Amemiya-Soler (1964-1995);

• And lots more!

• Strong (sometimes flagrantly ad hoc) axioms ⇒ QM.

This century: lots of new work, mainly from the QIT community
(Hardy (2000), Dakič-Brukner(2008), Masanes-Mueller(2010), CDP

(2010), ...)

• Focus on finite-dimensional QM + properties of composite
(entangled) systems

• Weaker (and less ad hoc) axioms ⇒ finite-dimensional QM.
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(Hardy (2000), Dakič-Brukner(2008), Masanes-Mueller(2010), CDP

(2010), ...)

• Focus on finite-dimensional QM + properties of composite
(entangled) systems

• Weaker (and less ad hoc) axioms ⇒ finite-dimensional QM.



Two concerns

(1) These newer axioms are still rather strong. The cited works all
assume some form of

• local tomography (LT): states of composite systems
determined by joint probabilties for local measurement
outcomes. This fails for R-QM and H-QM!

• uniformity: there’s only one kind of “bit”. This fails for any
theory embracing both R-QM and H-QM!

But Real + quaternionic QM is a reasonable theory!

(2) Even with these assumptions, derivation of QM still seems
rather involved.
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Widening the target

(Baez, 2012): Real/quaternionic Hilbert space = pair (H, J): H a
complex Hilbert space, J anti-unitary with J2 = +1 (R) or −1
(H). Set

(H1, J1)⊗ (H2, J2) = (H1 ⊗H2, J1 ⊗ J2) :

Then real⊗ real = real = quat.⊗ quat.; real⊗ quat. = quat.

Goal: a simple axiomatic framework allowing for finite-dimensional
C, R and H-QM (and not too much more)

— ideally, without
working too hard.
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Jordan Algebras

This was almost done in 1934!

A euclidean Jordan algebra is a finite-dimensional real inner
product space E with a commutative bilinear product x , y 7→ x · y
satisfying
• x · (x2 · y) = x2 · (x · y);
• ∃u ∈ E, u · x = x ∀x ∈ E;
• 〈x · y , z〉 = 〈y , x · y〉



Euclidean Jordan Algebras

Theorem [Jordan, von Neumann, Wigner, 1934] All euclidean
Jordan algebras are direct sums of the following types:

• Hermitian parts of real, complex, quaternionic matrix
algebras: Hn(R), Hn(C), Hn(H), with a · b = 1

2(ab + ba)

• Spin Factors: Vn = the euclidean space R× Rn, with Jordan
product

(t, x) · (s, y) = (ts + 〈x, y〉, ty + sx).

(Note: can be embedded in H2n(C)).

• The exceptional Jordan algebra H3(O); a · b = 1
2(ab + ba).



The Koecher-Vinberg Theorem

The Jordan product is hard to interpret. Fortunately, we don’t
need it!

Any EJA E is also an ordered real vector space with cone
E+ = {a2|a ∈ E}. An ordered space E is
• self-dual with respect to an inner product 〈, 〉 iff a ∈ E+

iff 〈a, b〉 ≥ 0 for all b ∈ E+.
• homogeneous if the group of order-automorphisms of E

acts transitively on the interior of the positive cone E+.

Theorem [Koecher, 1958; Vinberg, 1961]
Euclidean Jordan Algebras ⇔ HSD ordered vector spaces.

Goal (revised): Simple axioms leading to a representation of
physical systems in terms of HSD ordered vector spaces.
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II. (General) Probability Theory



Probabilistic models

A test space is a pair (X ,M): X a space of outcomes, M a
covering of X by non-empty finite sets called tests, representing
outcome-sets of various possible measurements, experiments, etc.

A probability weight on (X ,M): a function α : X → [0, 1] with∑
x∈E α(x) = 1 for every E ∈M.

A probabilistic model is a structure A = (X ,M,Ω):
• (X ,M) a test space,
• Ω a closed, convex set of probability weights on M.

Notation: M(A), X (A) and Ω(A) ...



The spaces E(A) and V(A)

A probabilistic model A generates a pair of ordered vector spaces:

• V(A) = span of Ω(A) in RX (A), with positive cone

V(A)+ := {tα|α ∈ Ω, t ≥ 0}

• E(A) = span of evaluation functionals x̂ ∈ V(A)∗, x ∈ X (A),
with cone

E(A)+ :=

{
k∑

i=1

ti x̂i

∣∣∣∣xi ∈ X (A), ti ≥ 0

}

We assume dimV(A) <∞. Then dimE(A) = dimV(A).
Note that ∀E ∈M(A),∑

x∈E
x̂ = uA ∈ E(A) where uA(α) = 1 ∀α ∈ Ω(A)



Examples

Classical models: E a finite set: A(E ) = (E , {E},∆(E )), where
∆(E ) = simplex of prob. weights on E . Then

V(A) ' RE ' E(A).

Quantum models: H a f.d. Hilbert space: Let
A(H) = (X (H),M(H),Ω(H)) where X (H) = unit sphere,
M(H) = all orthonormal bases of H, Ω(H) all prob. weights
induced by density operators on H. Then

V(A) ' E(H) ' E(A).

Goal (updated again): Conditions guaranteeing
• E(A) self-dual,
• E(A)+ ' V(A)+, and
• V(A) homogeneous.
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Composite systems

A non-signaling composite of models A and B: a model AB, plus a
mapping

X (A)× X (B)→ E+(AB) : (x , y) 7→ xy

such that
(a) (E ,F ) ∈M(A)×M(B) =⇒

∑
x∈E ,y∈F xy = uAB

(b) ω ∈ Ω(AB) =⇒ ω(x · ) ∈ V+(B) and ω( · y) ∈ V+(A)

By (a), ω ∈ Ω(AB) pulls back to a joint probability weight:

ω(x , y) := ω(xy);
∑

x∈E ,y∈F
ω(x , y) = 1.

AB is locally tomographic iff every state is uniquely determined by
its corresponding joint probability weight.



By (b), ω ∈ Ω(AB) has well-defined marginal and conditional
states:

ω1(x) :=
∑
y∈F

ω(·, y) and ω2|x(y) :=
ω(x , y)

ω1(x)
.

both in Ω(A), and similarly for ω2(y), ω1|y ∈ Ω(B). This gives a
Law of total probability: ∀ E ∈M(A), F ∈M(B),

ω2 =
∑
x∈E

ω1(x)ω2|x and ω1 =
∑
y∈F

ω2(y)ω1|y

Lemma: ω ∈ Ω(AB) ⇒ ∃! positive linear mapping
ω̂ : E(A)→ V(B), ω̂(x)(y) = ω(x , y) ∀ x ∈ X (A), y ∈ X (B).



Processes and categories

A process from A to B: is a positive linear mapping
τ : V(A)→ V(B) such that

uB(τ(α)) ≤ 1

∀α ∈ Ω(A). τ is reversible iff invertible with φ−1 positive (so for
some scalar t > 0, tφ−1 is a process.)

A monoidal probabilistic theory: a category C of probabilistic
models and processes, symmetric-monoidal w.r.t. an operation
A,B 7→ AB forming non-signaling composites.

From now, on, we work in a fixed monoidal theory C.

(Mainly for convenience).



III. Conjugates and Filters



Conjugate quantum systems

Let H be a complex Hilbert space of dimension n. Consider the
“EPR” state on H⊗H:

Ψ :=
1√
n

∑
x∈E

x ⊗ x ,

where E is any orthonormal basis for H (ψ’s independent of the
choice!) For a, b ∈ E(H), one has

Tr(ab) = 〈(a⊗ b)ψ,ψ〉.

So ψ encodes the trace inner product on E(H) as a STATE on
H⊗H — which perfectly and uniformly correlates every test
E ∈M(A) with its counterpart E ∈M(H): ∀x ∈ X (H),

|〈Ψ, x ⊗ x〉|2 =
1

n
.



Conjugates abstractly

Suppose all tests in M(A) have n outcomes.

A conjugate for A is a triple (A, γA, ηA) where γA : A ' A is an
isomorphism and ηA is a non-signaling state on A⊗ A such that

(a) η(x , γA(y)) = η(y , γA(x)) and

(b) ηA(x , γA(x)) = 1/n for every x , y ∈ X (A).

Note that (ηA)1 = ρ, the maximally mixed state ρ(x) ≡ 1/n.

Notation: From now on, γA(x) = x .



Filters

Let A be a probabilistic model. A filter for a test E is a process
φ : V(A)→ V(A) such that, for every x ∈ E and every state
α ∈ Ω(A),

φ(α)(x) = txα(x)

for some constant 0 ≤ tx ≤ 1. Call φ symmetric iff

(φ⊗ idA)(ηA) = (idA ⊗ φ)(ηA).

Example: Let E be an orthonormal basis for H: for any choice of
0 ≤ tx ≤ 1, x ∈ E , let V =

∑
x∈E txPx . Set

φ(a) = V 1/2aV 1/2

for a ∈ E(H). This is a filter, symmetric with respect to η
described above. Since φ(1) = V , any density operator V can be
prepared from the maximally mixed state, up to normalization, by
such a filter — reversibly, if V is non-singular.



Conjugates and Filters

Theorem: Suppose that, for every A ∈ C,

• A has a conjugate, A ∈ C.

• Any non-singular state α ∈ Ω(A) can be prepared from
ρ (up to normalization) by a (reversible) symmetric filter.

Then, for every A ∈ C, E(A) is HSD with respect to the inner
product 〈a, b〉 = ηA(a, b).

Proof: Conspicuously easy, using the KV theorem! See arXiv:
1206.2897.



Sketch of Proof (arXiv:1206:2897):

Homogeneity is clear.
Let α = φ(ρ), φ a symmetric filter for E ∈M(A). Set ω = (φ⊗ idA)(η).
Then ω1 = φ(ρ) = α. For x ∈ E , set δx := 1

nη(·, x). As φ is symmetric,

ω1|x(x)ω2(x) = η(·, φ(x)) = txη(·, x) = txnδx

The LOTP now gives us a kind of “spectral decomposition”:

α =
∑
x∈E

txδx (1)

Thus, V(A)+ is generated by δx -s. So η̂ : E(A)→ V(A), given by
η̂(a)(x) = η(x , a), takes E(A)+ onto V(A)+. By dimensionality, η̂ is
injective, so η̂ : E(A) ' V(A) (as ordered spaces).

Use this to pull the decomposition (1) back to one for elements of E(A).

Use this to show η(a, b) is positive-semidefinite.



IV. Categories of Jordan models



The Hanche-Olsen tensor product

One can show that the only locally tomographic monoidal
probabilistic theory satisfying these conditions is standard
finite-dimensional C-QM (Barnum, AW 2012)

Are there any other, non-LT probabilistic theories of this kind?

Let E be any euclidean Jordan algebra. There’s a universal
C ∗-algebra C ∗(E) (jordan homomorphisms φ : E→ Ah, A a C ∗

algebra, factor uniquely through ∗-homomorphisms C ∗(E)→ A).

(Note: E exceptional implies C ∗(E) = 0.)

Definition [Hanche-Olsen]: If E and F are EJAs, let E⊗̃F = Jordan
subalgebra of [C ∗(E)⊗ C ∗(F)]h generated by E⊗ F.



A Sample Theory

Let C be the category having objects = euclidean Jordan models,
morphisms E→ F = restrictions of CP maps C ∗(E)→ C ∗(F), and
composites given by A(E)A(F) = A(E⊗̃F). (This is a non-signaling
composite.)

One can show that all Jordan models A(E) satisfies hypothesis (b)
of the Theorem. What about conjugates? Define

γ : C ∗(E)→ C ∗(E)op and a 7→ (aop)∗ := a.

Setting E = γ(E) ≤ C ∗(E)op, we have C ∗(E) = C ∗(E)op. The
mapping a, b 7→ Tr(ab∗) defines a state

η̂ : C ∗(E)⊗ C ∗(E)→ C

which restricts to a non-signaling state on E⊗̃E making
(A(E), γA, ηA) a conjugate for A(E).



References

Baez (2011) arXiv:1101.5690
(also Foundations of Physics 42, 2012)

Barnum-AW (2012) arXiv:1202.4513

Chiribella-D’Ariano-Perinotti (2010) arXiv:1011.6451
(also Phys. Rev. A 84, 2011)

Dakic-Brukner (2009) arXiv:0911.0695

Hardy (2001) arXiv:quant-ph/0101012

Masanes-Mueller (2010) arXiv:1004.1483
(also New J. Phys. 13, 2011)

AW (2009) arXiv:0912.5530

AW (2012) arXiv:1206.2897


