LOGIC OF QUANTUM MECHANICS - TAKE II

Bob Coecke - Oxford-CS-QG — arXiv:1204.3458

LOGIG FOR COMPOSITION \& INTERACTION

Bob Coecke - Oxford-CS-QG — arXiv:1204.3458

VS. LOGIC FOR ISOLATION \& REDUCTION

Bob Coecke - Oxford-CS-QG — arXiv:1204.3458

- New foundational insights:
-
- New foundational insights:
-
-
- Drives new technologies:
-
-
- New foundational insights:
- Quantumness is all about composition
-
- Drives new technologies:
-
-
- New foundational insights:
- Quantumness is all about composition
- Grammar is all about meaning-flow
- Drives new technologies:
-
- New foundational insights:
- Quantumness is all about composition
- Grammar is all about meaning-flow
- Drives new technologies:
- 1st high-level account on quantum technologies
- New foundational insights:
- Quantumness is all about composition
- Grammar is all about meaning-flow
- Drives new technologies:
- 1st high-level account on quantum technologies
- 1st compositional distributional meaning model
[von Neumann 1932] Formalized quantum mechanics in "Mathematische Grundlagen der Quantenmechanik"
[von Neumann 1932] Formalized quantum mechanics in "Mathematische Grundlagen der Quantenmechanik"
[von Neumann to Birkhoff 1935] "I would like to make a confession which may seem immoral: I do not believe absolutely in Hilbert space no more." (sic)
[von Neumann 1932] Formalized quantum mechanics in "Mathematische Grundlagen der Quantenmechanik"
[von Neumann to Birkhoff 1935] "I would like to make a confession which may seem immoral: I do not believe absolutely in Hilbert space no more." (sic)
[Birkhoff \& von Neumann 1936] The Logic of Quantum Mechanics in Annals of Mathematics.
[von Neumann 1932] Formalized quantum mechanics in "Mathematische Grundlagen der Quantenmechanik"
[von Neumann to Birkhoff 1935] "I would like to make a confession which may seem immoral: I do not believe absolutely in Hilbert space no more." (sic)
[Birkhoff \& von Neumann 1936] The Logic of Quantum Mechanics in Annals of Mathematics.
[1936 - ...] many followed them, ...
[von Neumann 1932] Formalized quantum mechanics in "Mathematische Grundlagen der Quantenmechanik"
[von Neumann to Birkhoff 1935] "I would like to make a confession which may seem immoral: I do not believe absolutely in Hilbert space no more." (sic)
[Birkhoff \& von Neumann 1936] The Logic of Quantum Mechanics in Annals of Mathematics.
[1936 - ...] many followed them, ... and FAILED.

— mathematics -

— mathematics -

Hilbert space stuff: continuum, field structure of complex numbers, vector space over it, inner-product, etc.

— mathematics -

Hilbert space stuff: continuum, field structure of complex numbers, vector space over it, inner-product, etc.

WHY?

Hilbert space stuff: continuum, field structure of complex numbers, vector space over it, inner-product, etc.

WHY?

von Neumann: only used it since it was 'available'.

- physics -

—physics -

Schrödinger (1935):

Schrödinger (1935): the stuff which is the true soul of quantum theory is how quantum systems compose.

Schrödinger (1935): the stuff which is the true soul of quantum theory is how quantum systems compose.

Last 20 year discoveries: Schrödinger was right!

- the game plan -

- the game plan -

Task 0. Solve:
tensor product structure
the other stuff

> — the game plan -

Task 0. Solve:
$\frac{\text { tensor product structure }}{\text { the other stuff }}=? ? ?$

Task 1. Investigate which assumptions (i.e. structure) is needed to deduce physical phenomena.

- the game plan -

Task 0. Solve:
$\frac{\text { tensor product structure }}{\text { the other stuff }}=? ? ?$

Task 1. Investigate which assumptions (i.e. structure) is needed to deduce physical phenomena.

Task 2. Do we encounter the resulting "interaction structure" elsewhere in our classical reality.
tensor product structure the other stuff

1. Let A be a raw potato.
2. Let A be a raw potato.

A admits many states e.g. dirty, clean, skinned, ...

1. Let A be a raw potato.

A admits many states e.g. dirty, clean, skinned, ...
2. We want to process A into cooked potato B.
B admits many states e.g. boiled, fried, deep fried, baked with skin, baked without skin, ...

1. Let A be a raw potato.

A admits many states e.g. dirty, clean, skinned, ...
2. We want to process A into cooked potato B.
B admits many states e.g. boiled, fried, deep fried, baked with skin, baked without skin, ... Let

$$
A \xrightarrow{f} B \quad A \xrightarrow{f^{\prime}} B \quad A \xrightarrow{f^{\prime \prime}} B
$$

be boiling, frying, baking.

1. Let A be a raw potato.

A admits many states e.g. dirty, clean, skinned, ...
2. We want to process A into cooked potato B.
B admits many states e.g. boiled, fried, deep fried, baked with skin, baked without skin, ... Let

$$
A \xrightarrow{f} B \quad A \xrightarrow{f^{\prime}} B \quad A \xrightarrow{f^{\prime \prime}} B
$$

be boiling, frying, baking. States are processes

$$
\text { I }:=\text { unspecified } \xrightarrow{\psi} A .
$$

3. Let

$$
A \xrightarrow{g \circ f} C
$$

be the composite process of first boiling $A \xrightarrow{f} B$ and then salting $B \xrightarrow{g} C$.
3. Let

$$
A \xrightarrow{g \circ f} C
$$

be the composite process of first boiling $A \xrightarrow{f} B$ and then salting $B \xrightarrow{g} C$. Let

$$
X \xrightarrow{1_{X}} X
$$

be doing nothing. We have $\mathbf{1}_{Y} \circ \xi=\xi \circ \mathbf{1}_{X}=\xi$.
4. Let $A \otimes D$ be potato A and $\operatorname{carrot} D$
4. Let $A \otimes D$ be potato A and carrot D and let

$$
A \otimes D \xrightarrow{f \otimes h} B \otimes E
$$

be boiling potato while frying carrot.
4. Let $A \otimes D$ be potato A and carrot D and let

$$
A \otimes D \xrightarrow{f \otimes h} B \otimes E
$$

be boiling potato while frying carrot. Let

$$
C \otimes F \xrightarrow{x} M
$$

be mashing spice-cook-potato and spice-cook-carrot.

5. Total process:

$$
A \otimes D \xrightarrow{f \otimes h} B \otimes E \xrightarrow{g \otimes k} C \otimes F \xrightarrow{x} M=A \otimes D \xrightarrow{x \circ(g \otimes k) o(f \otimes h)} M .
$$

5. Total process:

$$
A \otimes D \xrightarrow{f \otimes h} B \otimes E \xrightarrow{g \otimes k} C \otimes F \xrightarrow{x} M=A \otimes D \xrightarrow{x \circ(g \otimes k) \circ(f \otimes h)} M .
$$

6. $\underline{\text { Recipe }}=\underline{\text { composition structure }}$ on processes.
7. Total process:

$$
A \otimes D \xrightarrow{f \otimes h} B \otimes E \xrightarrow{g \otimes k} C \otimes F \xrightarrow{x} M=A \otimes D \xrightarrow{x \circ(g \otimes k) \circ(f \otimes h)} M .
$$

6. $\underline{\text { Recipe }}=\underline{\text { composition structure }}$ on processes.
7. Laws governing recipes:

$$
\left(\mathbf{1}_{B} \otimes g\right) \circ\left(f \otimes \mathbf{1}_{C}\right)=\left(f \otimes \mathbf{1}_{D}\right) \circ\left(\mathbf{1}_{A} \otimes g\right)
$$

5. Total process:
$A \otimes D \xrightarrow{f \otimes h} B \otimes E \xrightarrow{g \otimes k} C \otimes F \xrightarrow{x} M=A \otimes D \xrightarrow{x \circ(g \otimes k) \circ(f \otimes h)} M$.
6. $\underline{\text { Recipe }}=\underline{\text { composition structure }}$ on processes.
7. Laws governing recipes:

$$
\left(\mathbf{1}_{B} \otimes g\right) \circ\left(f \otimes \mathbf{1}_{C}\right)=\left(f \otimes \mathbf{1}_{D}\right) \circ\left(\mathbf{1}_{A} \otimes g\right)
$$

i.e.
boil potato then fry carrot $=$ fry carrot then boil potato
5. Total process:
$A \otimes D \xrightarrow{f \otimes h} B \otimes E \xrightarrow{g \otimes k} C \otimes F \xrightarrow{x} M=A \otimes D \xrightarrow{x \circ(g \otimes k) \circ(f \otimes h)} M$.
6. $\underline{\text { Recipe }}=\underline{\text { composition structure }}$ on processes.
7. Laws governing recipes:

$$
\left(\mathbf{1}_{B} \otimes g\right) \circ\left(f \otimes \mathbf{1}_{C}\right)=\left(f \otimes \mathbf{1}_{D}\right) \circ\left(\mathbf{1}_{A} \otimes g\right)
$$

i.e.
boil potato then fry carrot $=$ fry carrot then boil potato
\Rightarrow Symmetric Monoidal Category

- Why does a tiger have stripes and a lion doesn't? -

— Why does a tiger have stripes and a lion doesn't? -

prey \otimes predator \otimes environment
hunt
dead prey \otimes eating predator

AN ALTERNATIVE TO REDUCTIONISM

AND IT GETS EVEN BETTER

BOXES AND WIRES

Roger Penrose (1971) Applications of negative dimensional tensors. In: Combinatorial Mathematics and its Applications, 221-244. Academic Press.
André Joyal and Ross Street (1991) The Geometry of tensor calculus I. Advances in Mathematics 88, 55-112.
— wire and box language -

$$
\text { wire }:=\text { system } ; \text { box }:=\text { process }
$$

— composing boxes -

— composing boxes -

sequential composition:

— composing boxes -
sequential composition:

parallel composition:

$$
f \otimes g \equiv \underset{\sim}{f}
$$

— merely a new notation?

- merely a new notation? -

$$
(g \circ f) \otimes(k \circ h)=(g \otimes k) \circ(f \otimes h)
$$

- merely a new notation? -

$$
(g \circ f) \otimes(k \circ h)
$$

- merely a new notation? -

$$
(g \otimes k) \circ(f \otimes h)
$$

- merely a new notation? -

$$
(g \circ f) \otimes(k \circ h)=(g \otimes k) \circ(f \otimes h)
$$

- merely a new notation? -

$$
(g \circ f) \otimes(k \circ h)=(g \otimes k) \circ(f \otimes h)
$$

QUANTUM PROCESSES

cambrider

BC (2003) The logic of entanglement. An invitation. quant-ph/0402014
Samson Abramsky \& BC (2004) A categorical semantics for quantum protocols. In: LiCS'04. quant-ph/0402130
— asserting "verschränkung" -

— asserting "verschränkung" -

— asserting "verschränkung" -

\Rightarrow introduce 'parallel wire' between systems:

— asserting "verschränkung"-

\Rightarrow introduce 'parallel wire' between systems:

subject to: only topology matters!

— asserting "verschränkung"-

E.g.

— the transpose -

— the transpose -

— sliding —

— state-question duality —

— state-question duality -

— state-question duality —

$$
a=?
$$

$$
A^{+} .1
$$

- completeness -

Theorem. [Kelly \& Laplaza 1980; Selinger 2005; Hasegawa, Hofmann \& Plotkin 2007; Selinger 2008]

TFAE:

- completeness -

Theorem. [Kelly \& Laplaza 1980; Selinger 2005; Hasegawa, Hofmann \& Plotkin 2007; Selinger 2008]

TFAE:

- An equational statement holds between diagrams;

- completeness -

Theorem. [Kelly \& Laplaza 1980; Selinger 2005; Hasegawa, Hofmann \& Plotkin 2007; Selinger 2008]

TFAE:

- An equational statement holds between diagrams;
- It holds in dagger compact categories;

- completeness -

Theorem. [Kelly \& Laplaza 1980; Selinger 2005; Hasegawa, Hofmann \& Plotkin 2007; Selinger 2008]

TFAE:

- An equational statement holds between diagrams;
- It holds in dagger compact categories;
- It holds for the dagger compact category of Hilbert spaces, linear maps, tensor product and adjoint.
— full expressivity -

— full expressivity —

Quantum Computer Science course:

- quantum computational models,
- quantum cryptography,
- quantum non-locality,
- quantum information,
- quantum algorithms, . . .

— full expressivity —

Quantum Computer Science course:

- quantum computational models,
- quantum cryptography,
- quantum non-locality,
- quantum information,
- quantum algorithms, . . .

Forthcoming textbook:
BC \& Aleks Kissinger, Picturing Quantum Processes. Cambridge University Press, forthcoming.

- Born-rule and mixing -

BC (2005) De-linearizing linearity. arXiv:quant-ph/0506134 Peter Selinger (2005) DCCCs \& CPMs

- Born-rule and mixing -

BC (2005) De-linearizing linearity. arXiv:quant-ph/0506134 Peter Selinger (2005) DCCCs \& CPMs

- Born-rule and mixing -

BC (2005) De-linearizing linearity. arXiv:quant-ph/0506134 Peter Selinger (2005) DCCCs \& CPMs

- classical data and classical maps -

BC \& Dusko Pavlovic (2006) Quantum measurements without sums. arXiv:quant-ph/0608035; BC, Eric O. Paquette and DP (2009) Classical and quantum structuralism. arXiv:0904.1997.

— classical data and classical maps -

BC \& Dusko Pavlovic (2006) Quantum measurements without sums. arXiv:quant-ph/0608035; BC, Eric O. Paquette and DP (2009) Classical and quantum structuralism. arXiv:0904.1997.

$=$

- classical data and classical maps -

BC \& Dusko Pavlovic (2006) Quantum measurements without sums. arXiv:quant-ph/0608035; BC, Eric O. Paquette and DP (2009) Classical and quantum structuralism. arXiv:0904.1997.

— phases and complementarity: full linearity —
BC \& Ross Duncan $(2008,2010)$ Interacting quantum observables (ICALP \& NJP). arXiv:0906.4725

— phases and complementarity: full linearity -

BC \& Ross Duncan $(2008,2010)$ Interacting quantum observables (ICALP \& NJP). arXiv:0906.4725

- completeness II -

Not a complete surprise but non-trivial:
Miriam Backens (2013) The ZX-calculus is complete for stabilizer quantum mechanics. arXiv:1307.7025

Not a complete surprise but non-trivial:
Miriam Backens (2013) The ZX-calculus is complete for stabilizer quantum mechanics. arXiv:1307.7025

Maybe more of a surprise:
Miriam Backens (2014) The ZX-calculus is approximately complete for single qubits.
— experiment: kindergarten quantum mechanics -

Contest in problem solving between:

- Children using quantum picturalism
- Physics teachers using ordinary QM

From: BC (2010) Quantum picturalism. Contemporary Physics 51, 59-83.
— experiment: kindergarten quantum mechanics -

Contest in problem solving between:

- Children using quantum picturalism
- Physics teachers using ordinary QM

The children will win of course!

From: BC (2010) Quantum picturalism. Contemporary Physics 51, 59-83.

- automation -

- automation -

Exploiting discreteness and the 'logic of yanking':

Quantomatic

\square Sarch mhas ste

About

- Development

Core
GUI
Tasks
Getting Started Publications sitemap

About

Overview

Open graph based formalisms give an abstract and symbolic way to describe computation. In particular, quantum information processing has a beautiful graphical description. However, manual manipulation of such graphs is slow and error prone. This project uses a graphical language, based on monoidal categories, to support mechanised reasoning with open-graphs In particular, Quantomatic's graph rewriting preserves the underlying categorical semantics

We are using open graphs as the representation for a generic 'logical' system (with a fixed logical-kernel) that supports reasoning about models of compact closed category. This provides a formal and declarative account of derived results that can include ellipses-style notation. The main application is to develop a graph-based language for reasoning about quantum computation, hence the name 'Quantomatic'.

Dixon (Google), Duncan (Strathclyde), Soloviev (Cambridge), Kissinger, Merry, Quick, Zamdzhiev, BC (Oxford), - sites.google.com/site/quantomatic/

— new physics -

Well under way:

- A new quantum formalism

— new physics -

Well under way:

- A new quantum formalism
- Many fragments/aspects of ours have been adopted by leading quantum foundations groups.

— new physics -

Well under way:

- A new quantum formalism
- Many fragments/aspects of ours have been adopted by leading quantum foundations groups.
E.g. Lucien Hardy in arXiv:1005.5164:
"... we join the quantum picturalism revolution [1]"
[1] BC (2010) Quantum picturalism. Contemporary Physics 51, 59-83.

— new physics -

Well under way:

- A new quantum formalism
- Many fragments/aspects of ours have been adopted by leading quantum foundations groups.

Promising:

- Rigorous \& convenient quantum field theory
- We captured common structure in QF and GR

—new physics -

Well under way:

- A new quantum formalism
- Many fragments/aspects of ours have been adopted by leading quantum foundations groups.

Promising:

- Rigorous \& convenient quantum field theory
- We captured common structure in QF and GR
- Quantum gravity
- New programs based on our new Q-formalism have been launched by ourselves and others
and now for something completely different, ...

NATURAL LANGUAGE MEANING

BC, Mehrnoosh Sadrzadeh \& Stephen Clark (2010) Mathematical foundations for a compositional distributional model of meaning. arXiv:1003.4394

Video Article: The Quantum Linguist

Bob Coecke has developed a new visual language that could be used to spell out a theory of quantum gravity-and help us understand human speech.

SCIENTIFIC AMERICAN ${ }^{m}$

Sign In / Register

Search ScientificAmerican.com

Quantum Mechanical Words and Mathematical Organisms

By Joselle Kehoe | May 16, 2013 | 10

QUANTUM LINGUISTICS Leap forward for artificial intelligence

— the from-words-to-a-sentence process —

— the from-words-to-a-sentence process —

Consider meanings of words, e.g. as vectors (cf. Google):

— the from-words-to-a-sentence process -

What is the meaning the sentence made up of these?

— the from-words-to-a-sentence process —

What is the meaning the sentence made up of these?

— the from-words-to-a-sentence process —

Information flow within a verb:

— the from-words-to-a-sentence process -

Information flow within a verb:

object

Again we have:

Lambek's Residuated monoids (1950's):

$$
b \leq a \multimap c \Leftrightarrow a \cdot b \leq c \Leftrightarrow a \leq c \circ b
$$

or equivalently,

$$
\begin{aligned}
& a \cdot(a \multimap c) \leq c \leq a \multimap(a \cdot c) \\
& (c \circ-b) \cdot b \leq c \leq(c \cdot b) \circ-b
\end{aligned}
$$

Lambek's Residuated monoids (1950's):

$$
b \leq a \multimap c \Leftrightarrow a \cdot b \leq c \Leftrightarrow a \leq c \circ b
$$

or equivalently,

$$
\begin{aligned}
& a \cdot(a \multimap c) \leq c \leq a \multimap(a \cdot c) \\
& (c \circ-b) \cdot b \leq c \leq(c \cdot b) \circ b
\end{aligned}
$$

Lambek's Pregroups (2000's):

$$
\begin{aligned}
a \cdot \cdot^{-1} a & \leq 1 \leq{ }^{-1} a \cdot a \\
b^{-1} \cdot b & \leq 1 \leq b \cdot b^{-1}
\end{aligned}
$$

- Lambek's pregoup grammar -

- Lambek's pregoup grammar -

For noun type n, verb type is ${ }^{-1} n \cdot s \cdot n^{-1}$, so:

- Lambek's pregoup grammar -

For noun type n, verb type is ${ }^{-1} n \cdot s \cdot n^{-1}$, so:

$$
n \cdot{ }^{-1} n \cdot s \cdot n^{-1} \cdot n
$$

- Lambek's pregoup grammar -

For noun type n, verb type is ${ }^{-1} n \cdot s \cdot n^{-1}$, so:

$$
n \cdot-1 n \cdot s \cdot n^{-1} \cdot n \leq 1 \cdot s \cdot 1
$$

- Lambek's pregoup grammar -

For noun type n, verb type is ${ }^{-1} n \cdot s \cdot n^{-1}$, so:

$$
n \cdot{ }^{-1} n \cdot s \cdot n^{-1} \cdot n \leq 1 \cdot s \cdot 1 \leq s
$$

- Lambek's pregoup grammar -

For noun type n, verb type is ${ }^{-1} n \cdot s \cdot n^{-1}$, so:

$$
n \cdot{ }^{-1} n \cdot s \cdot n^{-1} \cdot n \leq 1 \cdot s \cdot 1 \leq s
$$

Diagrammatic type reduction:

- Lambek's pregoup grammar -

For noun type n, verb type is ${ }^{-1} n \cdot s \cdot n^{-1}$, so:

$$
n \cdot{ }^{-1} n \cdot s \cdot n^{-1} \cdot n \leq 1 \cdot s \cdot 1 \leq s
$$

Diagrammatic meaning:

— algorithm for meaning of sentences -

— algorithm for meaning of sentences —

1. Perform type reduction:
(word type 1)...(word type n) \rightarrow sentence type
— algorithm for meaning of sentences -
2. Perform type reduction:
(word type 1)...(word type $n) \leadsto$ sentence type
3. Interpret diagrammatic type reduction as linear map:
$f: \because\left\lceil\mapsto\left(\sum_{i}\langle i i|\right) \otimes \mathrm{id} \otimes\left(\sum_{i}\langle i i|\right)\right.$
— algorithm for meaning of sentences -
4. Perform type reduction:
(word type 1)...(word type $n) \leadsto$ sentence type
5. Interpret diagrammatic type reduction as linear map:

6. Apply this map to tensor of word meaning vectors:

$$
f\left(\vec{v}_{1} \otimes \ldots \otimes \vec{v}_{n}\right)
$$

— algorithm for meaning of sentences -

1. Perform type reduction:

$$
\text { (word type } 1) \ldots(\text { word type } n) \leadsto \text { sentence type }
$$

2. Interpret diagrammatic type reduction as linear map:

$$
f: \because \uparrow \mapsto\left(\sum_{i}\langle i i|\right) \otimes \mathrm{id} \otimes\left(\sum_{i}\langle i i|\right)
$$

3. Apply this map to tensor of word meaning vectors:

$$
f\left(\vec{v}_{1} \otimes \ldots \otimes \vec{v}_{n}\right)
$$

\Longrightarrow Outperforms all existing NLP methods both in speed as well as in scope for applicability

- grammer as meaning flow -

- grammer as meaning flow -

- grammer as meaning flow -

- grammer as meaning flow -

- grammer as meaning flow -

- grammer as meaning flow -

— experiment: word disambiguation -
E.g. what is "saw" in: "Alice saw Bob with a saw".

Model	High	Low	ρ
Baseline	0.47	0.44	0.16
Add	0.90	0.90	0.05
Multiply	0.67	0.59	0.17
Categorical (1)	$\mathbf{0 . 7 3}$	$\mathbf{0 . 7 2}$	$\mathbf{0 . 2 1}$
Categorical (2)	$\mathbf{0 . 3 4}$	$\mathbf{0 . 2 6}$	$\mathbf{0 . 2 8}$
UpperBound	4.80	2.49	0.62

Edward Grefenstette \& Mehrnoosh Sadrzadeh (2011) Experimental support for a categorical compositional distributional model of meaning. Accepted for: Empirical Methods in Natural Language Processing (EMNLP'11).

- QFT -

"Topological" QFT (Atiyah '88):

- QFT -

"Topological" QFT (Atiyah '88):

"Grammatical" QFT:

- Frobenius algebras -

Language-meaning:

(the) woman who hates Bob

Stephen Clark, BC and Mehrnoosh Sadrzadeh (2013) The Frobenius Anatomy of Relative Pronouns. MOL '13.

- Frobenius algebras -

Language-meaning:

(the) woman who hates $\mathrm{Bob}=$

Stephen Clark, BC and Mehrnoosh Sadrzadeh (2013) The Frobenius Anatomy of Relative Pronouns. MOL '13.

- Frobenius algebras -

Language-meaning:

(the) woman who hates Bob = Alice

Stephen Clark, BC and Mehrnoosh Sadrzadeh (2013) The Frobenius Anatomy of Relative Pronouns. MOL '13.

