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Continuous Triangular norm: Definition

A continuous trinagular norm (continuous t- norm, shortly) is a
function « : [0,1]2 — [0, 1] that safisfies the following properties:

v

Commutativity: x xy = y * x

v

Associativity: (x x y) *z = X x (y x 2)

v

Monotony: if x < ythen xxz < yxz
Continuity

v
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Fuzzy Logics associated to continuous t-norm

Each of the following t-norms is a natural representation of the
Conjunction in the respective Logic

XOpy=x-y (Product t-norm)
xoy=max{x+y—1,0} (tukasiewicz t-norm)
X ©Ogy =min{x,y} (Gddel t-norm)

We will represent (in a probabilistic way) these t-norms in the
framework of Quantum Computation with mixed states.
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tukasiewicz and Product t-norms are known for their relations
with game theory applied to the theory of communication with
feedback.

» Lukasiewicz t-norm is related to Ulam’s games

» Product f-norm is specially applied in fuzzy control and
allows us to model a probabilistic variant of Ulam’ s game,
the so called Pelc’s game
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Part |

Representing Product {-norm
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Standard Quantum Computation
Standard Quantum Computation is based on:

» qubiti.e. a pure state in C?
» Unitary operators (quantum gates)
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In general, a quantum system is not in a pure state
(decoherence, environments, etc...). For this we need a
powerfull model, where:

Quantum Computation with Mixed States

» Qubits are replaced by density operators
» Unitary operators are replaced by Quantum Operations

E(p) = AipAl,
i

where A; are operators satisfying >, A,TA,- = | (Kraus
representation)
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Recalling the Born rule, one can naturally define the
probability-value of any density operator p of (" = ®C2.

Probability
For any p € D(H(M),

p(p) == TH(P{")p),

where D (#(") is the set of all density operators of H(" .
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Logical overview

Conventionally, we can assume that the two elements |1) and
|0) of the canonical orthonormal basis of the Hilbert space C?
represent the canonical truth-values Truth and Falsity.
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The notions of truth, falsity and probability:

True and false registers

> |X1,...,Xpn) is a true register iff |x,) = [1);
> |x1,...,Xpn) is a false register iff |x,) = |0).

In other words, the truth-value of a register is determined by its
last element.
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Truth and falsity

» The truth property of H(" is the projection operator P1(”)
that projects over the closed subspace spanned by the set
of all true registers.

> The falsity property of (") is the projection operator Py"
that projects over the closed subspace spanned by the set
of all false registers.
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The Toffoli Gate

For any m, k, p > 1, the Toffoli gate T(™k-) is defined on
HMHE+P) = gMC2 @ R*C? ® ®PC? = @(MKPIC2 as follows.

If |x) = |Xq...Xm) € ®TC?, |y) = |y1...yk) € ®¥C? and
|Z) = |21 ... Yp) € ®PC?, then :

TR ®1y))®12) = [X) @ Y) ® |21, - Zp-1) © [ Xmyi D 2p)

where & is the sum modulo 2.
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Matrix representation of Toffoli 7(™.1)

Let us consider a Hilbert space H = H, ® Hp Where

dim(Ha) = 2™ and dim(H,) = 2.

Then, the Toffoli gate T(™k.1) can be seen as a block diagonal
matrix:

I(2k+1 ><2K+1) 0

(m,k,1) _ j(2m—1x2m=1)
T == I ® 0 ‘ I(2k—1><2k—1) ® Xor

where Xor =

o o =
o =+ O
o O o
—- O O
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(1,11

OO O - 0000
OO+ 000 O0OO0o
- OO0 O OO OoOOo
O - 0000 O0OOo

OO OO OOOoO =
OO OO0 O —~0
OO OO0 —+0O0
OO OO —+0O0O0o
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The Compositional Conjunction

Let p be a density operator of @"C? and let o be a density
operator in ®*C2. The Compositional Conjunction of p and o is
defined as follows:

AND(m’k)(p®0') _ D-,—(m,k,1)(p® = P(()1))

where P T(mk.1) s the "left-right" application of the Toffoli
matrix. One can prove:

p(AND™K) (p @ 7)) = p(p)p(0).

AND probabilistically represents the Product -norm.
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But in real cases the input of AND can be an unfactorized state!

This requires a new conjunction, called:

Holistic Conjunction
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Entanglement

The meaning of entanglement is strictly related to the principle
of quantum non-separability.

Consider a density operator p of H2 @ HP.

We say that p represents an entangled state iff p cannot be
decomposed as a convex combination of density operators
having the form: p2 @ pP, with p2 density operator in 2 and p®
density operator in 7°.

In other words:

p # >; \ipi, where \; are positive real numbers such that

S i Ai = 1 and p; are density operators having the form: p2 ® pb.
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Physical States

Entangled States = Separable States

Factorized States
(Product States)
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Remark

Factorized states are only special cases of non-entangled
states.

Consider the state [1)~) = \i@(|01> — [10)). Let Py, be the

projection operator determined by [x~) and let /®) be the
identity operator of (2.

Letp = JPy-y + 1.
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Example

& 0 0 0

o I -1lo

r=log 21 g
6 3

0 0 0 }§

Even if p is not factorizable, p represents a non-entangled state!
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Representation via Pauli Matrices

Let o;, {i = 1,2,3} represent the Pauli matrices and let p be a
density operator in the Hilbert space C?. Then:

1
p= 5(12 + roq + Moo + I’3(T3)

> |12+ |r|? + |r3|? = 1 — Pure state
> |12+ || + |r3|? < 1 — Mixed state
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Let H be an n-dimensional Hilbert space an let {|¢)} ; be an
orthonormal basis of . Let us consider the following three
families B, C, D of n x n matrices:

B={Bc:1<k<n-1}

where

2

Kk + 1)(\¢1)(¢1 |+ -+ (i) (k| — K|ka1) (k)

By =

Fuzzy structures in m Computation with mixed states
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C:{Ck7j21§k<j§n}

where

Crj = |9 (W] + [¥) (W

D:{Dkvj:1§k<j§n}

where

Dij = i1 ¥kl — 19w} (251
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Consider the set ¥ = C U D U B ordered as follows

Y = {Ci2,Ci3,...,Co3,...|D12,D13,...,D03,...|By,...,Br_1}
= {0‘1,.. 0'nn21 |O‘n(n 1)+1,...,O'n(n_1)|0'n(n_1)+1,...,O'n2_1}
The elements of the sequence X are called generalized Pauli

Matrices. The elements of X are the generators of SU(n). In
particular 7rZ; = 0 for any j and Tr(¥X;%;) = 20;.
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Theorem
Let p be a density operator of an n-dimensional Hilbert space
H. Then:
1. 17
p= El” -+ 5 Z sj(p)o;
j=1
where:

» o; are the generalized Pauli matrices of H,

» sj(p) = tr(poj). The sequence (s1(p)...Sp2_1(p)) is called
the generalized Bloch vector associated to p.
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For n = 2 we obtain the usual representation of a density
operator in C2:

’
p= 5(12 + 1oy + r2o2 + r303).
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Matrix representation of the partial trace

Let p be a density operator of an n-dimensional Hilbert space
H = Ha ® Hp Where dim(Ha) = m and dim(Hp) = k. If we
divide p in m x m blocks B; j, where each block is a k x k
matrix, then:

tI'B171 Z‘I’B172 th17m

a tI'BQJ tng,g 500 l‘I'BZm
pe = tpp = : : . :

trBmy trBma ... trBmm

m
p° = tap=7 B
i=
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Theorem

LetH = Ha ® Hyp where dim(Ha) = m and dim(Hp) = n.
Consider od...02, . ando?...0% .. the generalized Pauli
matrices of H, and Hp, respectively. Then, any density
operator p of H can be represented as follows:

= 0?2 ® pP + Fac(p).

where Fac(p) = } Zm2 Dyt facj k(p)(of © o) and

facjk(p) = tr(plof @ ok]) — tr(plof @ M)tr(p[I™ © of])
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Hence, any p can be represented as a sum of a factorized state
and a paricular self-adjoint operator.
(The Schlienz-Mahler decomposition).

One can prove that:

Tr(PyFac(p)) = 0
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The Holistic Conjunction
Let p be a density operator of H = ®"C? @ @*C? = (™A C?2,

The Holistic Conjunction AND(H’Z;k) on p is defined as follows:

AND (p) = PTmkD (p @ P{V)
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The probability of the Holistic Conjunction

Theorem
Let H = Ha @ Hp, where Ha = @MC2 and Hp = QKC2.
Then,

p(ANDY () = p(p™)e(p?) + fac(p, AND{G) =
— p(AND(p? © pP)) + fac(p, AND!T)

where
faC(p, AND{THy —
2m 2k k
& S pm(am 1)1 Lok (2 1) 41 fag;i(p)tr(P{" (o7 @ of)
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We have:

K

>~} < fac(p. AND{) <

> If p is factorizable then fac(p, AND{T}¥)) = 0
(but the other way around does not hold).

The Holisitc Conjunction does not caracterize the
Entanglement!
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The probability of a Holistic Conjunction

Let p be a density operator of H = H, @ Hp = (MK C2.
Let us indicate by a; the i-th diagonal element of p.

We have:
2m—1 2k—1
k
P(AND/(-/IZ/ )(P)) = Z Z Q(20—1)2k+28
a=1 B=1
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The Holistic Conjunction

Let p € H2 @ HP with %2 = HP = C? and let us indicate with g;
the i-th diagonal element of p. Then,

1,1
p(AND;(L/o/)(P)) = Z Z Q(20—1)21+28 = 84
a=1p=1
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Remark
Suppose that m# m',k # k', m+ k =m' + k' = nand let p be
a density operator of ®"C?.

Generally we have:

p(ANDER) () # p(ANDSE ) ().
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Matrix block representation of the Holistic
Conjunction

Let p be a density matrix of #2 @ HP = (MK 2,
On the diagonal of p we can individuate 2™ blocks consisting of
(2K x 2K)-matrices:

. 1(2kx2k
[

- q(2Fx2k)
[-13

. 1(@x2¥)
[lom
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Matrix blocks representation of the Holistic
Conjunction

Let:
» « be the sum of the even diagonal elements of the even
diagonal blocks of p;

» (3 be the sum of the odd diagonal elements of the even
diagonal blocks of p;

» ~ be the sum of the even diagonal elements of the odd
diagonal blocks of p;

» ¢ be the sum of the odd diagonal elements of the odd
diagonal blocks of p.
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Matrix blocks representation of the Holistic
Conjunction

We have the following results:
> p(p?) = a+p;
> p(p?) =a+7;
> p(ANDj"(p)) = .

Hence,

fac(p, AND) = a5 — Bry.
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Example

Consider the following density matrix p of C2 ® C? :

3 (1) o1 0
v =10 5 T o
0 0 0 }
We obtain:
fac(p, AND':V) = —%.
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Theorem
Let p be a density operator of H = H2 @ HP = (mAC?2,

1. p(AND{G(p)) < p(p?), P(6?);

2. if p(AND{T)(p)) = 1, then p(p?) = p(p?) = 1 and
consequently fac(p, AND,(jZ;k)) =0;

3. the following situation is possible: p(p?) # 0, p(p?) # 0

and p(AND{T¥ (p)) = 0.
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The Holistic Conjunction

Figure : Holistic Conjunction
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Werner states

Let p[,,’|’,] be a density matrix of a Hilbert space # whose
dimension is n® (with n > 1).
p[V”V] is called a Werner State of # iff, for any unitary operator U":

Pl = (U@ UMplgl (UM © (U™)).
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Parametrization of a Werner State

Werner states can be parametrized in different ways.
One way is the following:

m _ n+1-2a nz_n+1—2an >
PWiay = n(n? —1) n(n? —1) Sw

where I is the n? x n? identity matrix and Sw™ is the n? x n?
Switch gate, given by: Sw™ = i (10Ul @ [f){il), where |/) and
|lj) are vectors of the n-dimensional computational basis and o
is a real number such that « € [0, 1].
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Theorem
Let p["] be a n?-dimensional Werner state. Then:

i) pE,',’,] is factorizable iff o = 1.

if) E/v] is separable iff } < a < 1;

The real number « can be considered as related to a measure
of entanglement (accordingly, the “degree of entanglement" of a
Werner State is inversely proportional to «).

When a = 0, we can reasonably assume that p[”]

maximally entangled.
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Theorem

Consider a Wernes State pw(a).

By using the matrix representation of pw(a), we obtain:

: m a—1)—
p(AND{G (o)) = THrE==2,
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Theorem
fac(plyy , AND{) = 2znst.

fac(pw(a),AND%,”)) = 0 iff the Werner state is non-factorizable .

The Holistic conjunction caracterizes Entanglement for
Werner (and Isotropic) states!
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Part Il

Representing Lukasiewicz -norm

X©®y=max{x+y—1,0}
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k-order Polynomial - Notation

» The term multi-index denotes an ordered n-tuple
a = (aq,...,ap) of non negative integers «;

» If k is a natural number, o < kK means that «; < k for each
ie{l,...,n}

» The order of ais given by |a| = a1 + ...+ an

» If x=(xy,...,xp) is an n-tuple of variables and
a=(o,.. a,,) a multi-index, the monomial x“ is defined
by x* = x{"' x32 ... X"
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In this language a polynomial of order k is a function

P(x)= ) a.,x* st a,€R
ol <k
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n-degree Bernstein polynomial basis

Let x = (xq,...,Xn), k be a natural number and
a = (aq,...,an) be a multi-index such that o < k. Then the
Bernstein polynomial By ,(X) is defined as:

Bk,a(x) = H «

i=1

1 — x;)k—eix®i,
Q; ( I) i
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Theorem

Letx = (x1,...,Xn) and k be a positive integer. For any
continuous function f : [0,1]" — R the polynomials

(67 (07
Bi(f,X) = >_ f(5 50 7 )Bra(X)
a<k

converge to f(x) uniformly on [0,1]" when k — oc.
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Let x = (xq, ..., Xn) and k be a natural number. The Bernstein
basis is given by:

Bi(X) = {(1=x)* XD (1=x)* x5 i+ Bi = k, i€ {1,...,n}}
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Bernstein basis and density operators

If p = 1=x . |ando = 1=y are density
operators, the diagonal of p ® o is the Bernstein basis Ba(x, y).
In fact
(1=x(-y
e le ]
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Proposition
Let Xy, ..., X, be a family of density operators such that

o 1—X,' b,'
""( by )

and let us consider a tensor product
X = (®KX1) @ (&%) ® ... ® (©*X,). Then we have:

Diag(X) = Bk(x1, ..., Xn)

where Diag(X) denotes the set containing the diagonal entries
of X.
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Polynomial quantum operation - Definition

A quantum operation P : £(®"KC?) — L(®"C?) is called
polynomial quantum operation iff there exists a polynomial
P(xy, ..., Xn) such that for each n-tuple (o4, ..., ap) in D(C?)
we have that:

p(P((®%01) ® ... ® (8%0n))) = P(p(o1), .., p(0n))

Fuzzy structures in tum Computation with mixed states
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Theorem
Letx = (xq,...,Xn) be an n-tuple of variables and consider the
set Bk(x).

Let P(x) = > ycg,(x) &Y be a polynomial such thaty € Bk(x),
0 < ay and0 < P(x) [jo,12< 1. Then,

there exists a polynomial quantum operation
P L(®™C?) — L(2"KC?) such that for each n-tuple
o= (01,...,0n) inD(C?)

p(P((& 1) ®...® (®"on))) = P(p(0+), .., P(on))
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Stone Weierstrass type theorem

Let f: [0,1]" — [0, 1] be a continuous function. Then for each
e > 0 there exists a quantum operation

P : L(®"™KC?) — L(®"™C?) such that for each o = (o1, ...,0n)
in D(C?),

P(P((&01) ® ... ® (8 0n))) — F(p(01) ... plom))| < ¢
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A problem

The convergence velocity by using Bernstein polynomial is low.
It implies that: a good approximation need a high tensorial
power. It is inefficient to implement in view of the fact that, it
requires many copies of the involved states.
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1. we introduce the auxiliary function
[0,2] 3z~ g(z) =min(1,2) s.t. x@y=g(x+y)
then the problem of approximating the bivariate function & is changed into the easier problem of

approximating the one-variable function g(z) in [0, 2].
2. By considering the function

, if x €[0,1]
if xe(1,2]

= NIN

[072]92>—>h(z):{

- Z
55
3. We define =
9(2) = = + h(2)
2
4. h(z) is symmetric with respect to the point z = 1, i.e., h(2 — z) = h(z). For this reason we approximate
h(z) by using the symmetric functions ) _
Z'@2-2)

n

w@ =2+ ade-2. zcba2

i=1

i+1
6. The coefficients c; are given by % (1 {2)
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The approximant and the error

i+1 . .
gnixy) =2y 20 (42)(x+y)'(<1—x)+(1—y>>'

i=1

We estimate a bound for the approximation error, in fact:

_ . < —3/2
&n = max |(x&y)=gn(x+y)l < 5=+ O(n")
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Casen=1

> Gi(X+y) =X +Y) (= x)+ FX+ )1 =y) + 3(x+Yy)

» error < 0,08
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Casen=2
’92(X+}/) 2 (X+Y)+2970(X+Y)((1_X)+(1_}/))+
1372

2070 (X +Y)2((1 = x)Z+2(1 = x)(1 - y)
» error < 0,04

+(1=y)?)
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Quantum computational logic: probabilistic approach .
A categorical result

Quantum computational logics with mixed states may be presented as a logic ( Term, |=), where
P> Termis an absolute free algebra (i.e. a language), whose natural universe of interpretation is a set D of
density operators and whose connectives are naturally interpreted as certain quantum gates.
» canonical interpretations are Term-homomorphisms e : Term — D.
» canonical valuations are functions f : Term — [0, 1] such that f can be factorized in the following way:
f

Term —» [0,1]
e| T /‘

p
D

where p is the probability value p(—) = tr(P; —).
P |- is the logical consequence,

aEB it pla)=1= p(8) =1
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An MV-algebra is an algebra (A, &, -, 0) of type (2, 2, 0) satisfying the following equations:
MV1 (A, &, 0) is an abelian monoid,
MV2 ——-x = x,
MV3 x @ —0 = -0,
MV4 —(-x@y)@y=—(-y@®x) & x.

In agreement with the usual MV-algebraic operations we define:

XOy=-(=x® ~y), X—>y=-x@y, XVy=(x—y)—y
XAYy=x0 (x —Y), 1= -0,
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A very important example of MV-algebra is
[0, 1]mv = ([0, 1], @, ,0)

such that [0, 1] is the real unit segment and @ and — are
defined as follows:

X®y=min(1,x+y) -x=1-x

The derivate operations in [0, 1]y are given by
1. x®y =max(0,x + y — 1) (Lukasiewicz t-norm)
2. x -y =min(1,1 — x + y) (tukasiewicz implication)
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A product MV -algebra (for short: PMV-algebra) is an algebra
(A, @,e,—,0) of type (2,2,1,0) satisfying the following:

1 (A, ®,—,0) is an MV-algebra,

2 (A,e,1) is an abelian monoid,

3 xe(y©-z)=(xey)®(xe2).
An important example of PMV-algebra is [0, 1]y equipped
with the usual multiplication i.e.

[07 1]PMV = <[07 1]7 D, e, 7, O>
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Proposition

Each PMV-algebra is isomorphic to a subdirect product of
linearly ordered PMV-algebras.
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A categorical result

1. Let Term be and absolutely free algebra in the signature (&, -, —, 0)

2. Let D be a set of density operators closed by (&, JAND, NOT) such that ”(]Do) Py € D

3. Lete: Term — D bea (®, -, —, 0)-Homomorphisms

Theorem

Let us consider the diagram of canonical valuations.

Term — [0,1]
| E/’

p
D

1. ker(p) is a congruence respect to (&, IAND, NOT, #Po) Py)

2. D/ ker(p) is PMV-isomorphic to [0, 1]ppy -
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Question

What is the algebra associated to (D, &, IAND, NOT, .2 #ryy Fo)?

» This algebra describes the combinational logic of the
quantum gates (@, IAND, NOT).

» |t plays a similar role that Boolean algebra describing the
combinational logic for digital circuits.
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The first and more basic algebraic structure associated to (¢, NOT)
is the quasi MV -algebra or gMV-algebra for short. It is an algebra
(A,®,—,0,1) of type (2,1,0,0) satisfying the following equations:
Ql. xea(yez)=(xay)s 2z,

Q2. ——x = X,

Q3. x®1=1,

Q4. ~(~xdy)oy=-(yox) X,

Q5. =(x®0)=-xa0,

Q6. (xay)®0=xaY,

Q7. -0=1.

From an intuitive point of view, a gMV-algebra can be seen as an
MV-algebra which fails to satisfy the equation x ¢ 0 = x.
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A categorical result

Let A be a quasi PMV-algebra
> a=g biffa® 0= ba 0is acongruence in A
» A/=ois a PMV-algebra

» If Ais a set of density operators

=o = Ker(p) where p(—) = tr(Pi(-))

Note that

The natural projection = : A — A/= is the abstract description of the
probability p(—) = tr(P;(-))
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=p is a uniformly defined congruence in the category gP MV.
Hence it defines a reflector

qPMYV 5 PMVY  where Ars N(A) = A/=g
Hence the Logic that describes the logical consequence
aEpg iff pla)=1= p(p) =1

is the PMV-calculus
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PMYV-calculus

tukasiewicz axioms:

Wi a— (B — o),

W2 (o= B) = ((B—7) = (= 7))

W3 (ma — =8) = (B — a),

W4 (e — B) = B) = (B — a) = a),
Product axioms:

P1 (e B) — (Bea),
P2 (1ea)+ «,
P3 (aepB) — 8,
(e B)ey) < (e (Be7)),
(a0 (BO =) < (e B) O =(a®7)),
The deduction rule is modus ponens
{a,a = B} =B
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