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Vsl Simimics Definition

Games X
A game is a tuple

G = (I,{Ni}ier, {uitier),

G where
@ / is a finite set of players,
o [1; is a set of pure strategies for agent i € /, and
@ u;j: Il — R is a utility function, assigning agent i's
payoff to each pure strategy profile,

(a pure strategy profile is a tuple (m1,...,7,), such
that each m; € I;.)

General Remarks
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Mixed Strategies

Definition (Mixed strategy)

Strategies

Given a set I; of pure strategies for a player i, a mixed
strategy is a probability mass function

agj . I'I,- — [0, 1],

that is, a function satisfying

General Remarks Z O-I(Trl) = 1'

TI','EH,'

Let X ; be the set of all mixed strategies for player i.
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Strategies

o | ={a,b}
e IN; = {H,;, T;} (heads and tails of player i's coin)
e u;j: M— {—=1,1} is given by the following chart:

Hp Tp
H, | +1,-1 | —1.41
T, | —1,+1 | +1,—1
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Definition (Mixed profile)

A mixed (strategy) profile tuple is a tuple (o1,...,0,) for
each player j € /.
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Mixed strategies

Definition (mixed strategy function)

A mixed strategy function is a function o : [1 — [0, 1], where
[T is the set of pure strategy profiles.

4

Given a mixed profile (o1, ...,0,), we can define a mixed
strategy function o : 1 — [0, 1] by

o(m) = H oi(mi).
i=1
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Definition (Mixed profile)

A mixed (strategy) profile tuple is a tuple (o1,...,0,) for
each player j € /.

Joshua Sack

Mixed strategies

Definition (mixed strategy function)

A mixed strategy function is a function o : [1 — [0, 1], where
[T is the set of pure strategy profiles.

4

Given a mixed profile (o1, ...,0,), we can define a mixed
strategy function o : 1 — [0, 1] by

o(m) = H oi(mi).
i=1

The original mixed profile can be recovered by

gi(r) = >, alp).

{peN|pj=m;}
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There exist mixed strategy functions that are now equivalent
to mixed profiles: correlated strategies.

Mixed strategies
i Example

o Hy | Tp
H,| 0.2|0.2
7,102 |04

Here, whether a chooses H, with probability 1/2 or
probability 1/3 depends on b's strategy.

4

We will call a mixed strategy function a mixed profile only if
the mixed strategy function is equivalent to a mixed profile
(and are hence uncorrelated).
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Expected utility

The utility function u; : I — R can be extended from pure
to mixed strategy profiles by

ui(o) = o(m)ui(r).

mell
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Given a mixed strategy profile o and a mixed strategy pj,
denote by (p;, 0_;) the strategy profile

Nash equilibrium

(017 <o 0i1,Piy Oj+15 - - - 7pn)~

Definition

A Nash equilibrium is a (mixed or pure) strategy profile o
such that for any agent i and any strategy p;

ui(o) > ui(pi,o—i).




Reasoning with

awwiionill [\ ash equilibria in matching pennies

Joshua Sack

Hp Th
H, | +1,-1] —1,+1
Nash equilibrium Ta _1, +1 +1’ -1

@ Pure strategy Nash equilibria: none

e Mixed strategy Nash equilibria: each player plays 1/2
for both their strategies.
[Corresponding collated profile: uniform probability
function (each of the 4 pure profiles gets probability
probability )]
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@ Marc Pauly's dissertation, “Logic for social software”,
ILLC, University of Amsterdam, 2001.
defines “Game logic" and “Coalition logic" with formulas
Game logics describing what certain (groups of) agents can enforce.

@ R. Alur, T. Henzinger, O. Kupferman. Alternating-Time
temporal logic. Journal of the ACM. 2002.
Describes powers of coalitions over time, using concurrent
game models.

e J. Halpern: Substantive Rationality and Backward
Induction. Games and Economic Behavior, 37:425-435,
2001.
gives a logic for a fixed game that is defined on Kripke
models whose states are labelled with (pure) strategy profiles.
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tu=aP(mw)|t+t
pu=t>al-plone|[Cle|[Cile | [Pile | [=ile

where a€ Q, m€Tll,iel,and G C /.

v

semantics

Formulas are evaluated on mixed strategy functions o arising

Examples and

Puzzles from mixed profiles
o F Y 1 qeP(mi) = iff o0y quo(mi) > r
. o E[Gle iff 7 E ¢ whenever
foreachie G, o; =7;
o F[Cile iff 7 ¢ whenever u;j(o) < ui(7)
o E[dile iff 7 E ¢ whenever uj(c) > ui(1)
o F[=ile iff 7 E ¢ whenever uj(c) = uj(7)
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Given a game G, let
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Mixed Strategies t = aP(ﬂ') | t+t
pu=t=al-plonel|[Gle|[Cie ]| [Tie | [=ile

where a€ Q, m€Tll,iel,and G C /.

Syntax and

L v
semantics

Formulas are evaluated on mixed strategy functions o arising

Examples and

Puzzles from mixed profiles
o F Y 1 qeP(mi) = iff o0y quo(mi) > r
. o E[Gle iff 7 E ¢ whenever
foreachie G, o; =7;
o F[Cile iff 7 ¢ whenever u;j(o) < ui(7)
o E[dile iff 7 E ¢ whenever uj(c) > ui(1)
o F[=ile iff 7 E ¢ whenever uj(c) = uj(7)

@ J. Sack & W. van der Hoek. Modal Logic for Mixed
Strategies. To appear in Studia Logica.
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Syntax and
semantics

Meaning of [G]

@ [G]p means that ¢ is true for any strategy profile where
those not in G potentially switch to different strategies.

o [/\ {i}]p means that ¢ is true whenever i potentially
switches to a different strategy.

o [0] means that @ is true is all profiles.
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Expressing that 7 is the strategy profile:

e /\ P(m) = 7(m)

mel
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The utility for 7 is term

e def
ui £ ui(m)P(w)

mell

The probability i has for playing pure strategy 7; is a term:

Pi(mi) ZY {P(p) | p € N, pi = mi}

Expressing that 7; is i's (mixed) strategy

i E N (Pi(m) = 7i(m))

7T,'€|_|,'
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Definition (Best response)

Given a mixed strategy profile o, i's strategy is a best
response if for every formula ¢, we have

o e = [(I\{IHIE)e.
Given a specific o we define
bri(o) = o = [(1\ {iNI{Ei)o.

A Nash equilibrium is a mixed strategy profile, such that
everyone's strategy is a best response. For each o, define

Nash(o) = /\ bri(o).

iel

Syntax and
semantics

So o is a Nash equilibrium in G if and only if = Nash(o)
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Proof system

Axioms

Classical Logic Tautologies

[*(¢ = ¥) = ([*]le — [*]¥), with x € {G,C;, T, =i}
[¥]p — ¢, with x € {G,=;} (reflexivity)
[l =[Gl (i € G)

[Cily = [=illEile

[[ile = [=ill=ile

+Pi(m;) > q — [i] £ Pi(m;) > q ([i] fixes i's strategy)
tu; >qg—[=]fu >q ([=i] fixes i's utility)
ui > q—[Cilu; >q

ui<qg—[3ju<gq

Global modality axioms (next slide)

Probability Bounds and Restrictions (next slide)
Inequality axioms (a later slide)

Rules (a later slide)



fPuMall Global modality axioms
Joshua Sack Note that [(] (“in all mixed profiles”) serves as a global
modality.
o [0)(o =) = [Ml(Aicc i = (G)¥)
(If ¢ is true at o, then (G)yp is true in any 7 that agrees with
o on the strategies of those in G.)

o [0](o = ¢) = [0](u; = ui(o) = (=i)¢)

o [0](e — ) — [0](ui < ui(o) = (Ci)p)

o [0](o — ) — [0](wi > ui(o) = (Ti)p)
Bound axioms

e P(m)>0

> nP(m =1
We can restrict the domain of the model being characterized
toX C Y

@ —o for each o ¢ )N

Proof system
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o (Permutation)
D oke1 WP(mk) = g = 32k 4 P(mj) = g
o (Adding and deleting zero terms)
t>qg« t+0P(7Tk+1) >q
ARG o (Adding coefficients)
Dk=1 GkP(mi) > g A3 Zpoy qP(mi) = 4 —
> k=1(ak + @) P(mi) = (9 + ')
e (Multiplying my a non-negative constant)
t > q < dt > dg where d >0
@ (Monotonicity)
(t>q) — (t > q') where g > ¢
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Modus Ponens
AFp—=19v AFyp

Al

Necessitation x € {G,=;,C;, J;}

Proof system

A
1%

Monotonicity
Fy
Al
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Definition (Pseudo modalities)

Let s; € {G,;,0;,=;} U L. Define [(s1,-..,5n)]¢ as
follows

o [Nlp =
o [(¥, 52, s)le Z b = [(s2,- -, 5n)]

o [(a,52,...,sn)]e Zall(s2, - .-, sn)]e

For each s = (s1,...,sp,)

AR [s](P(m) # q) forall g€ Q, g # p
AF[s](P(m) = p)

Each pure profile must be assigned a probability by each
agent.
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T forall T € Zsuchthat 7, =0, foralli € G

Fo — [Gle

(Compare with the axiom

[0)(e = ») = 0](Aicg o7 = (G)¥))

Proof system

7 — ¢ for all 7 € ¥ such that u;(7) = ui(o)
o= [=ile

F 7 — ¢ for all T € ¥ such that u;(7) > ui(o)
Fo — [Cile

-7 — ¢ for all T € ¥ such that u;(7) < ui(o)
Fo — [Oie
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Examples and

Puzzles

Examples and Puzzles
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Lottery paradox

Suppose we want to define belief as having probability at
least r for some r < 1, that is we fix a r and set

@ Suppose the chance a lottery ticket does not win is r
(say 99,999/100, 000).
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@ Suppose the chance a lottery ticket does not win is r
(say 99,999/100, 000).

Lottery parado o If p; is the proposition that lottery ticket i looses the

lottery, then B(p) is true.
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@ Suppose the chance a lottery ticket does not win is r
(say 99,999/100, 000).

Lottery parado o If p; is the proposition that lottery ticket i looses the
lottery, then B(p) is true.

@ Let n be the number of lottery tickets
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@ Suppose the chance a lottery ticket does not win is r
(say 99,999/100, 000).

Lottery parado o If p; is the proposition that lottery ticket i looses the
lottery, then B(p) is true.

@ Let n be the number of lottery tickets
e Then A/_; B(pi) is true.
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@ Suppose the chance a lottery ticket does not win is r
(say 99,999/100, 000).

Lottery parado o If p; is the proposition that lottery ticket i looses the
lottery, then B(p) is true.

@ Let n be the number of lottery tickets
e Then A/_; B(pi) is true.

@ Normal modal operators distribute over conjunction:
B(e Np) < B(p) A B(Y)
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@ Suppose the chance a lottery ticket does not win is r
(say 99,999/100, 000).

o If p; is the proposition that lottery ticket i looses the
lottery, then B(p) is true.

Lottery paradox

@ Let n be the number of lottery tickets
e Then A/_; B(pi) is true.

@ Normal modal operators distribute over conjunction:

B(e A1) <+ B(w) A B(¥)
e Then as B(A_; pi) <+ A\_1 B(pi), you believe that all
the tickets will loose.
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A cable guy is coming to your home between 8 a.m. and 4
p.m., and you must be at home when he arrives.

Cable Guy Paradox
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A cable guy is coming to your home between 8 a.m. and 4
p.m., and you must be at home when he arrives.
Unfortunately, you do not know when exactly he will come.
Now, you place a bet with someone as to whether the cable
guy will come during the time interval (8,12] or the time
interval (12,16).

Cable Guy Paradox
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A cable guy is coming to your home between 8 a.m. and 4
p.m., and you must be at home when he arrives.
Unfortunately, you do not know when exactly he will come.
Now, you place a bet with someone as to whether the cable
guy will come during the time interval (8,12] or the time
interval (12,16). Until 8 a.m., you consider both intervals
equally appealing.

Cable Guy Paradox
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A cable guy is coming to your home between 8 a.m. and 4
p.m., and you must be at home when he arrives.
Unfortunately, you do not know when exactly he will come.
Now, you place a bet with someone as to whether the cable
guy will come during the time interval (8,12] or the time
interval (12,16). Until 8 a.m., you consider both intervals
equally appealing. But regardless of when the cable guy
Cable Guy Parado actually comes, there will some period of time after 8

a.m. and before his arrival, and during this period, the
probability of his arriving in the morning is less than for his
arriving in the afternoon.
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A cable guy is coming to your home between 8 a.m. and 4
p.m., and you must be at home when he arrives.
Unfortunately, you do not know when exactly he will come.
Now, you place a bet with someone as to whether the cable
guy will come during the time interval (8,12] or the time
interval (12,16). Until 8 a.m., you consider both intervals
equally appealing. But regardless of when the cable guy
Cable Guy Parado actually comes, there will some period of time after 8

a.m. and before his arrival, and during this period, the
probability of his arriving in the morning is less than for his
arriving in the afternoon.

@ A. Hajek. The Cable Guy Paradox. Analysis 65, 2005.
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Suppose you are on a game show, and you are given the
choice of three doors.

Monty Hall Puzzle
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Monty Hall Puzzle
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Suppose you are on a game show, and you are given the
choice of three doors. Behind one door is a car, and behind
the others are goats. You pick a door, say number 1, and
the host, who knows what's behind the doors, opens another
door, say number 3, which is a goat.

Monty Hall Puzzle
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Suppose you are on a game show, and you are given the
choice of three doors. Behind one door is a car, and behind
the others are goats. You pick a door, say number 1, and
the host, who knows what's behind the doors, opens another
door, say number 3, which is a goat. He says “Do you want
to pick door number 27"

Monty Hall Puzzle
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Suppose you are on a game show, and you are given the
choice of three doors. Behind one door is a car, and behind
the others are goats. You pick a door, say number 1, and
the host, who knows what's behind the doors, opens another
door, say number 3, which is a goat. He says “Do you want
to pick door number 27" Is it to your advantage to switch
your choice of doors?

Monty Hall Puzzle
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Suppose you are presented with two envelopes, and are told
that each contains money, and that one of them contains
twice as much money as the other.

Two-Envelop Problem
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Suppose you are presented with two envelopes, and are told
that each contains money, and that one of them contains
twice as much money as the other. You are asked to choose
an envelop in which you can keep.

Two-Envelop Problem
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Suppose you are presented with two envelopes, and are told
that each contains money, and that one of them contains
twice as much money as the other. You are asked to choose
an envelop in which you can keep. You pick one of them,
but before opening it, you are asked if you would like to
switch.

Two-Envelop Problem
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Suppose you are presented with two envelopes, and are told
that each contains money, and that one of them contains
twice as much money as the other. You are asked to choose
an envelop in which you can keep. You pick one of them,
but before opening it, you are asked if you would like to
switch. Is it to your advantage to switch?

Two-Envelop Problem
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Let the amount of money in the envelop you selected be n.

Two-Envelop Problem
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Let the amount of money in the envelop you selected be n.
You might guess that there is a 50% chance that the other
envelop has more money.

Two-Envelop Problem
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Let the amount of money in the envelop you selected be n.
You might guess that there is a 50% chance that the other
envelop has more money. Then the expected value of
switching would be:

5n

1 1
5-2n+§~n/2zf>n.

Two-Envelop Problem
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Let the amount of money in the envelop you selected be n.
You might guess that there is a 50% chance that the other
envelop has more money. Then the expected value of
switching would be:

1 1 5n

—.2 —-n/2=— >n.

520 + > n/ 2"
Analysis of this problem suggests the importance of a prior
probability on selecting n and the probability the one you
chose having more being conditional on n.

Two-Envelop Problem




Reasoning with
Probabilities

Joshua Sack

Two-Envelop Problem

Analyzing the two-envelop problem

Let the amount of money in the envelop you selected be n.
You might guess that there is a 50% chance that the other
envelop has more money. Then the expected value of
switching would be:
1 1 5n
—2n+=--n/2=— > n.
2 + 2 / 4
Analysis of this problem suggests the importance of a prior
probability on selecting n and the probability the one you
chose having more being conditional on n.
See also,
@ D. Samet, |. Samet and D. Shmeidler. One Observation
behind Two- Envelope Puzzles.
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@ The involvement of o-algebras:
o non-discrete (Vitali set issues)
o discrete, but allows us to represent greater uncertainty
(qualitative uncertainty of non-measurable sets)
@ Quantitative uncertainty vs qualitative uncertainty:
e quantitative uncertainty is expressed using probability
formulas P;(¢) > r and
e qualitative uncertainty is expressed using modal
operators [i]p
Mixing these allows us to represent qualitative
uncertainty over probabilities.
e Conditioning vs updating:
o Condition probability P(y | ©) > r: After learning v,
then P(¢ | 9) is the probability i gives to the truth of ¢
before learning 1.
o Updated probability [¢)]P;(¢) > r (where ¢ is an action
(A, e) of everyone learning 1): After learning 1, then
[¥]Pi(p) is what i gives to the truth of ¢ after learning
.

Joshua Sack

General Remarks
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