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Probabilistic Epistemic Logic

Let AP be a set of proposition letters and I a set of agents.
Formulas:

ϕ ::= > | p | ¬ϕ | ϕ ∧ ϕ | [i ]ϕ | ti ≥ r

where p ∈ AP, r ∈ Q, and ti is a term for agent i
Terms for i ∈ I :

ti ::= aPi (ϕ) | ti + ti

where a ∈ Q.

This language is from:
R. Fagin & J. Halpern (1994) Reasoning about Knowledge

and Probability. Journal of the ACM 41:2, pp. 340–367.
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Qualitative and Quantatative

[i ]ϕ: Qualitative uncertainty by agent i regarding ϕ

Pi (ϕ) ≥ r : Quantitative uncertainty by agent i
regarding ϕ
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Probabilistic epistemic models and semantics

Let AP be a set of proposition letters and I a set of agents.
M = (X ,R, ‖ · ‖,P), where

(X ,R, ‖ · ‖) is an epistemic model

P is a function fram I to functions Pi mapping each
state x to probability space (Si ,x ,Ai ,x , µi ,x), such that
Si ,x ⊆ X .

The semantics of formulas is defined by a function [[·]] from
formulas to subsets of X .

[[>]] = X
[[p]] = ‖p‖
[[¬ϕ]] = X − [[ϕ]]
[[ϕ ∧ ψ]] = [[ϕ]] ∩ [[ψ]]
[[[i ]ϕ]] = li ([[ϕ]])
[[
∑n

k=1 akPi (ϕk) ≥ r ]] = {x |
∑n

k=1 akµi ,x([[ϕk ]] ∩ Si ,x) ≥ r}
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Relating Belief and Probability

We ofter define belief in terms of probability:

[i ]ϕ ≡ Pi (ϕ) = 1

Given a discrete probabilistic modal model (X , ‖ · ‖, {Pi}i∈I ),
we can define an epistemic relation Ri such that

xRiy if and only if Pi ,x(y) > 0

But if the probabilistic modal model is not discrete, we
cannot necessarily define such a relation. We simply define
[i ] directly in terms of probability.

If we define belief as such, there is no need for probabilistic
epistemic models.
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Motivation for separating qualitative and
quantitative

What if we want to have qualitative uncertainty over what
the probability distribution is?

An example illustrating such a situation is given in the next
slide.
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Fagin, Halpern, and Tuttle example

Suppose there are two agents i and k .

1 k is first given a bit 0 or 1. k learns he has this bit, i is
aware that k received a bit, but i does not know what
bit k received.

2 k flips a fair coin and looks at the result. i sees k look
at the result, but does not what the result is.

3 k performs action s if the coin agrees with the bit
(given that heads agrees with 1 and tails agrees with 0),
and performs action d otherwise.

This example is from

R. Fagin & J. Halpern (1994) Reasoning about
Knowledge and Probability. Journal of the ACM 41:2,
pp. 340–367.

8/32



Reasoning with
Probabilities

Mixing Qualitative
and Quantitative

Joshua Sack

Probabilistic
Epistemic Logic

Example

Proof system

Complexity

Probabilistic
automata

Two-sorted language

Basic operations

One-sorted language

Discussion

There are four possible sequences of events:
(1,H), (1,T ), (0,H), (0,T ) (note that the action s or d is
determined from the first two steps). Until k performs the
action s or d , agent i considers any of these four states
possible.

(1,H) (1,T )

(0,H) (0,T )

We indicate i ’s uncertainty between two states using a
bidirectional arrow between the two states. In particular, an
arrow from state x to state y indicates that i considers y
possible if x is the actual state. (Before the bit is given, k’s
epistemic relation will be the same).
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Here is a possibility for i ’s probability spaces. The sample
space enclosed in a box, and the σ-algebra equivalence
classes are enclosed in the dotted ovals.

(1,H) (1,T )

(0,H) (0,T )

M1

The sample space is the same as the set of states i considers
possible. Individual states cannot be measurable (otherwise
0 or 1 must be assigned a probability).
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Another possibility has a sample space containing only the
states with the correct bit (but recall that i considers all
states possible and both sample spaces possible).

(1,H) (1,T )

(0,H) (0,T )

M2

Without assigning probability to the bit, i can now assign a
probability to the actions s and d .
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Here i is uncertain among 4 probability spaces.

(1,H) (1,T )

(0,H) (0,T )

M3
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Mixing qualitative and quantitative

When mixing probability and epistemics, each represents
beliefs about different aspects of a situation. In the previous
example, there may be

1 quantitative (probability) beliefs about the coin toss

2 qualitative beliefs about the bit or about the
probabilities themselves
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Representing uncertainty about probabilities

unmeasurable sets:

advantage of allowing us to clearly represent an agent’s
complete uncertainty about the probability of an
situation.
disadvantage of excluding potentially reasonable sets
from having a probability (such as the probability of
{(H, 1), (T , 0)}, that is agent k doing action s).

uncertainty about probabilities

advantage of allowing us to divide an unmeasurable set
into subsets each in different probability spaces.
advantage of allowing us to reflect uncertainty
between/among specific probability spaces.
disadvantage of requiring all probability measures
considered possible be explicit; complete uncertainty
requires all infinitely many possible probability measures.
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Proof System for PEL

All propositional tautologies

[i ](ϕ→ ψ)→ ([i ]ϕ→ [i ]ψ)

[i ]ϕ→ ϕ

[i ]ϕ→ [i ][i ]ϕ

¬[i ]ϕ→ [i ]¬[i ]ϕ

Pi (ϕ) ≥ 0

Pi (>) = 1

Pi (ϕ ∧ ψ) + Pi (ϕ ∧ ¬ψ) = Pi (ϕ)

Inequality axioms (Next slide)

If ` ϕ and ` ϕ→ ψ, then ` ψ.

If ` ϕ, then ` [i ]ϕ.

If ` ϕ↔ ψ, then ` Pi (ϕ) = Pi (ψ).
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Inequality axioms

(permutation)
a1Pi (ϕ1) + · · ·+ anPi (ϕn) ≥ r →
aj1Pi (ϕj1) + · · ·+ ajnPi (ϕjn) ≥ r

(adding coefficients)
(
∑n

k=1 akPi (ϕk) ≥ r) ∧ (
∑n

k=1 bkPi (ϕk) ≥ s)→
(
∑n

k=1(ak + bk)Pi (ϕk) ≥ (r + s))

(adding and deleting 0 terms)
(t ≥ r)↔ (t + 0Pi (ϕ) ≥ r)

(multiplying by non-zero coefficient)
t ≥ r ↔ at ≥ ar whenever a > 0.

(dichotomy)
t ≥ r ∨ t ≤ r

(monotonicity)
t ≥ r → t > s, whenever r > s.
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Completeness

Fix a consistent formula θ

Let ∆ be the set of subformulas and negations of
subformulas of θ. (∆ is finite.)

M = (X ,R, ‖ · ‖,P), where

X is the set of maximally consistent subsets of ∆

xRiy iff for all [i ]ϕ ∈ ∆, [i ]ϕ ∈ x iff [i ]ϕ ∈ y .

‖p‖ = {x ∈ X | p ∈ x}
P = {(Si ,x ,Ai ,x , µi ,x)}

Si,x = X
Ai,x = P(X )
µi,x is any function satisfying conditions of next slides.
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Lemma for Completeness

Σ = {σ1, . . . , σn} be the set of subsets of θ,

At(Σ) = {
∧n

i=1 δi | δi ∈ {σi ,¬σi}}

Lemma

Let t ≥ r be a probability formula. Let
At(Σ) = {α1, . . . , α2n}. Then there are rationals a1, . . . , a2n

such that t ≥ r is equivalent to
a1Pi (α1) + · · ·+ a2nPi (α2n) ≥ r .

Let At(Σ, ϕ) = {α ∈ At(Σ) | ` α→ ϕ}. Then

P(ϕ) ≡
∑

α∈At(Σ,ϕ)

P(ϕ ∧ α) ≡
∑

α∈At(Σ,ϕ)

P(α).

The first equivalence comes from multiple applications of
additivity for each subformula σi .

18/32



Reasoning with
Probabilities

Mixing Qualitative
and Quantitative

Joshua Sack

Probabilistic
Epistemic Logic

Example

Proof system

Complexity

Probabilistic
automata

Two-sorted language

Basic operations

One-sorted language

For each x ∈ X , let x̂ =
∧

{δ∈x} δ.
Note: {x̂ | x ∈ X} ⊆ At(Σ), and

{x̂ | ψ ∈ x} = At(Σ, ψ) := {α ∈ At(Σ) | ` α→ ϕ}.

Fix i and x .

Let {t1 ≥ r1, . . . , tk ≥ rk} be the i inequality formulas
in x .

Let {tk+1 ≥ rk+1, . . . , tm ≥ rm} be the i inequality
formulas in ∆− x .

Each formula tj ≥ rj is equivalent to
aj ,1Pi (α1) + · · ·+ aj ,2nPi (α2n) ≥ rj

Each formula tj ≥ rj is equivalent to∑
y∈X aj ,xPi (ŷ) ≥ rj
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System of inequalities

Let X = {y1, . . . , y`}. Let µi ,x be defined on X as a solution
to: ∑

y∈X a1,yµi ,x(y) ≥ r1
...∑

y∈X ak,yµi ,x(y) ≥ rk∑
y∈X ak+1,yµi ,x(y) < rk+1

...∑
y∈X am,yµi ,x(y) < rm∑

y∈X µi ,x(y) ≥ 1

−
∑

y∈X µi ,x(y) ≥ −1

µi ,x(y1) ≥ 0
...

µi ,x(y`) ≥ 0
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Completeness follows from a truth lemma:

Lemma

For every formula ϕ ∈ ∆ and state x ∈ X ,

ϕ ∈ x iff (M, x) ∈ [[ϕ]]

This is proved by induction on the structure of the
formula, and is similar to the proof of the truth lemma
for basic epistemic logic.

Note that the case for probability formulas t ≥ r does
not make use of the induction hypothesis, but follows
directly from the choice of the probability measure.
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Complexity lower bound

Satisfiability of epistemic logic is known to be PSPACE
complete. As epistemic logic is a fragment of probabilistic
epistemic logic (a very simple reduction to probabilistic
epistemic logic), then probabilistic epistemic logic is
PSPACE-hard
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Complexity upper bound

The upper bound is also PSPACE.

Proposition

PSPACE = NPSPACE

One can non-deterministically construct a tableaux for an
input ϕ with polynomial branching to test whether a formula
is accepted by a tableaux. (Acceptance by a tableaux implies
that ϕ is satisfiable.) Tableaux acceptance can be checked in
PSPACE.
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Probabilistic Automata
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Probabilistic automaton

Let Dist(S) be the set of all discrete probability distributions
(or mass functions) on a set S .

Definition

A probabilistic automaton (augmented with a valuation) is a

tuple (S , I , { i→}i∈I ), ‖ · ‖), such that

S is a set of states
i→⊆ S × Dist(S)

‖ · ‖ : AP → P(S).
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Two-sorted probability language
State formulas (with i ∈ I )

ϕ ::= > | p | ¬ϕ | ϕ ∧ ϕ | [
i→]ψ

Distribution formulas (with r ∈ Q)

ψ ::= > | ¬ψ | ψ ∧ ψ | Lp(ϕ)

Semantics

s � p iff s ∈ ‖p‖
s � T iff always
µ � T iff always

s � ¬ϕ iff s 6� ϕ
µ � ¬ψ iff µ 6� ψ
s � ϕ1 ∧ ϕ2 iff s � ϕ1 and s � ϕ2

µ � ψ1 ∧ ψ2 iff µ � ψ1 and µ � ψ2

s � [
i→]ψ iff µ |= ψ for all µ such that s

i→ µ
µ � Lrϕ iff µ({s | s |= ϕ}) ≥ r
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Example

µ1 µ2

r s

1
.5

.5
i

i

r � [i ]¬>
s � [i ]L.5[i ]¬>
s � 〈i〉¬L1[i ]¬>
s � 〈i〉L1[i ]¬>
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Syntactic limitation of two-sorted language

The two-sorted language forbids certain higher-order
constructs, such as

[a][b]p

L.3L.6p

L.3(p ∧ L.6q)
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Lifting and flattening

Definition (lifting)

Given a relation R ⊆ X × Y , define a lifting
`(R) ⊆ Dist(X )× Dist(Y ) of R by

µ`(R)ν ⇔ (∀A ⊆ X )(µ(A) ≤ ν(R(A)).

Definition (flattening)

Given a µ ∈ Dist(Dist(S)), define the flattening of µ by the
function fl : Dist(Dist(S))→ Dist(S) by

fl(µ)(s) =
∑

ν′∈supp(µ)

µ(ν ′)ν ′(s).

where supp(µ) is the support of µ ({x | µ(x) > 0}).
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Defining over distributions

Definition (
i
�)

Given a transition
i→⊆ S × Dist(S), l let

i
� ⊆ Dist(S)× Dist(S) be defined by µ

i
� ν if and only if

there exists ν ′, such that µ`(
i→)ν ′ and ν = fl(ν ′).

Definition (Lifting of a measure)

Also given µ ∈ Dist(S) let µ̆, where

µ̆(ν) =

{
µ(s) ν = δs
0 otherwise

.
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Lifting of probabilistic automata

Given a probabilistic automaton

A = (S , I , { i→}i∈I , ‖ · ‖),

define its lifting

Lift(A) = (Dist(S), {
i
�},V ),

where V : AP → P(Dist(S)), such that µ ∈ V (p) if and
only if supp(µ) ∩ ‖p‖ 6= ∅.

The exact definition of V here is somewhat arbitrary, but it
relates to predicate liftings in coalgebraic modal logic.
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One-sorted language and semantics

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | [
i
�]ϕ | Lr (ϕ)

Given a probabilistic automaton A = (S , I , { i→}i∈I , ‖ · ‖)
(with lifting (Dist(S), {

i
�},V ))

µ � p iff µ ∈ V (p)
µ � ¬ψ iff µ 6� ψ
µ � ψ1 ∧ ψ2 iff µ � ψ1 and µ � ψ2

µ � [
i
�]ϕ iff ν |= ψ whenever µ

i
�ν

µ � Lrϕ iff µ̆({ν | ν |= ϕ}) ≥ r
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