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Let AP be a set of proposition letters and / a set of agents.

Probabilistic Formulas:
Epistemic Logic ’

pu=Tlpl-pleApl|lile|ti>r
where p € AP, r € Q, and t; is a term for agent i
Terms for i € I:

ti = aPi(p) | ti + t;

where a € Q.

@ This language is from:
R. Fagin & J. Halpern (1994) Reasoning about Knowledge
and Probability. Journal of the ACM 41:2, pp. 340-367.
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Qualitative and Quantatative

@ [i]¢: Qualitative uncertainty by agent i regarding ¢
@ Pi(v) > r: Quantitative uncertainty by agent i
regarding
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Let AP be a set of proposition letters and / a set of agents.
M = (X7 R, ” ’ H?P)' where
Probabilistic

Epistemic Logic e (X,R,| -]) is an epistemic model

Joshua Sack

@ P is a function fram [/ to functions IP; mapping each
state x to probability space (S; «, Ai x, ftix), such that
Si,x - X.
The semantics of formulas is defined by a function [[-] from
formulas to subsets of X.

[T] = X

[rl = |lpll
[l = X —[¢]
[ A Y] = [¢l N [¥]
[[11¢] = i([#])

[>"k—1 axPiler) > ] = {x | >k—y akpix([x] N Six) > r}
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We ofter define belief in terms of probability:

Probabilistic

Epistemic Logic [/]QO = PI(QD) = 1

Given a discrete probabilistic modal model (X, || - ||, {Pi}ier),
we can define an epistemic relation R; such that

xR;y if and only if P; (y) > 0

But if the probabilistic modal model is not discrete, we
cannot necessarily define such a relation. We simply define
[i/] directly in terms of probability.

If we define belief as such, there is no need for probabilistic
epistemic models. J
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Motivation for separating qualitative and
quantitative

What if we want to have qualitative uncertainty over what
the probability distribution is?

)

An example illustrating such a situation is given in the next
slide.
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Suppose there are two agents 7/ and k.

Q Kk is first given a bit 0 or 1. k learns he has this bit, i is
aware that k received a bit, but / does not know what
bit k received.

@ K flips a fair coin and looks at the result. i sees k look
at the result, but does not what the result is.

© k performs action s if the coin agrees with the bit
(given that heads agrees with 1 and tails agrees with 0),
and performs action d otherwise.

This example is from
e R. Fagin & J. Halpern (1994) Reasoning about

Knowledge and Probability. Journal of the ACM 41:2,
pp. 340-367.
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Example

Discussion

There are four possible sequences of events:
(1,H),(1,T),(0,H),(0, T) (note that the action s or d is
determined from the first two steps). Until k performs the
action s or d, agent i considers any of these four states
possible.

COH) «~—(0.7) D

We indicate i's uncertainty between two states using a
bidirectional arrow between the two states. In particular, an
arrow from state x to state y indicates that i considers y
possible if x is the actual state. (Before the bit is given, k's
epistemic relation will be the same).
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space enclosed in a box, and the o-algebra equivalence
classes are enclosed in the dotted ovals.
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The sample space is the same as the set of states i considers

possible. Individual states cannot be measurable (otherwise
0 or 1 must be assigned a probability).
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states with the correct bit (but recall that i considers all
states possible and both sample spaces possible).
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Without assigning probability to the bit, i/ can now assign a
probability to the actions s and d.
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Example

When mixing probability and epistemics, each represents
beliefs about different aspects of a situation. In the previous
example, there may be

@ quantitative (probability) beliefs about the coin toss

@ qualitative beliefs about the bit or about the
probabilities themselves
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@ unmeasurable sets:
e advantage of allowing us to clearly represent an agent's
Example complete uncertainty about the probability of an
situation.

e disadvantage of excluding potentially reasonable sets
from having a probability (such as the probability of
{(H,1),(T,0)}, that is agent k doing action s).

@ uncertainty about probabilities

e advantage of allowing us to divide an unmeasurable set
into subsets each in different probability spaces.

e advantage of allowing us to reflect uncertainty
between /among specific probability spaces.

e disadvantage of requiring all probability measures
considered possible be explicit; complete uncertainty
requires all infinitely many possible probability measures.
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o All propositional tautologies

o [il(¢ = v) = ([ily — [il¥)
St o [ilp— ¢

[l — [lile

il = [i=[ie

Pi(p) =0

P(T)=1

Pi(e A1) + Pi(p A=) = Pi(y)
Inequality axioms (Next slide)

If = and F ¢ — 9, then - 1.
If = ¢, then F [i]e.
If - © < 1[), then P,'(QD) = P,(w)
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a1Pi(p1) + -+ anPi(pn) > r —
a Pilpi) + -+ a,Pi(wj,) > r

Proof system

(adding coefficients)
(Xk=1 akPi(ei) = r) A (e biPi(r) = ) —
(X k=1(ak + bi)Pi(i) = (r + 5))
(adding and deleting 0 terms)
(£> r) o (¢4 0P(p) > 1)
e (multiplying by non-zero coefficient)
t > r <+ at > ar whenever a > 0.
e (dichotomy)
t>rvt<r
e (monotonicity)
t>r — t>s, whenever r > s.
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o Fix a consistent formula 6
@ Let A be the set of subformulas and negations of
subformulas of 6. (A is finite.)
M= (X,R,||-|l,P), where
@ X is the set of maximally consistent subsets of A
o xRy iff for all [i]p € A, [i]p € x iff [i]p € y.
o ol = {xe X |pex)

o P={(Six Aix tix)}
o Si,x =X
o Aix=P(X)
e i« is any function satisfying conditions of next slides.

Proof system
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o At(X) ={A10i | 0; € {oj,~0i}}

Proof system

Let t > r be a probability formula. Let

At(X) = {ai,...,aan}. Then there are rationals ay, . .., axn
such that t > r is equivalent to

31P,'(Oz1) + -+ aznP,'(OZZn) >r.

Let At(X,p) = {a € At(X) | Fa — ¢}. Then

P(p) = Z Pl Na) = Z P(a).

a€AL(Z,p) a€At(X,p)

The first equivalence comes from multiple applications of
additivity for each subformula o;.
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Note: {Xx | x € X} C At(X), and
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{X|Ypex}t=AtX,¥) ={ac At(X) | Fa — ¢}.

Proof system

@ Fix / and x.

o Let {t; > r,...,tx > rx} be the i inequality formulas
in x.
o Let {tx+1 > rks1,.-.,tm > rm} be the i inequality

formulas in A — x.
@ Each formula tj > r; is equivalent to
aj1Pi(c1) + - 4 aj 20 Pi(azn) > 1
@ Each formula tj > r; is equivalent to
Yyex 3ixPi(y) = 1
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to:

Dyex aykix(y) = n

Proof system

> yex Ay tix(y) rk
D oyex Ak+1ytix(y) < ey
ZyeX amyhix(y) < rm
Zyex Ni,x()/) > 1
—dyexbix(y) > -1
pix(y1) = 0

Mi,X(y@) 0
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S For every formula ¢ € A and state x € X,
v € x iff (M, x) € [¢]

@ This is proved by induction on the structure of the
formula, and is similar to the proof of the truth lemma
for basic epistemic logic.

@ Note that the case for probability formulas t > r does
not make use of the induction hypothesis, but follows
directly from the choice of the probability measure.
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Complexity

Satisfiability of epistemic logic is known to be PSPACE
complete. As epistemic logic is a fragment of probabilistic
epistemic logic (a very simple reduction to probabilistic
epistemic logic), then probabilistic epistemic logic is
PSPACE-hard
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The upper bound is also PSPACE.

Proposition
PSPACE = NPSPACE

One can non-deterministically construct a tableaux for an
input ¢ with polynomial branching to test whether a formula
is accepted by a tableaux. (Acceptance by a tableaux implies

that ¢ is satisfiable.) Tableaux acceptance can be checked in
PSPACE.

Complexity
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Probabilistic automaton

Let Dist(S) be the set of all discrete probability distributions
(or mass functions) on a set S.

Definition
A probabilistic automaton (augmented with a valuation) is a
tuple (S, 1,{-5>}ier), || - ||), such that

@ S is a set of states

o 5C S x Dist(S)

o [-]: AP = P(S).
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po=Tlpl-wlere| =]

Distribution formulas (with r € Q)

V=T [ Ay | Ly(p)

Tzt g Semantics
skEp iff s € ||p||
sET iff always
uwET iff always
sE-p iff s ¢
pE Y iff pu 7

sE w1 Apy iff sE 1 and s F ¢
fE YL Ao iff p iy and g E o

sk [>]y  iff g =4 for all p such that s i 1
pELye iffp({s|skE=eh)>r
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Two-sorted language

rE[i-T
sE[[Ls[i]=T
sk <i>—\L1[i]—\T
sE <i>L1[i]—\T
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The two-sorted language forbids certain higher-order
constructs, such as

o [a][b]p
o L3lgp

o L3(pALeq)

Two-sorted language
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Basic operations

Lifting and flattening

Definition (lifting)

Given a relation R C X x Y, define a lifting
/(R) C Dist(X) x Dist(Y) of R by

H(R) & (VA C X)(u(A) < v(R(A)).

Definition (flattening)

Given a p € Dist(Dist(S)), define the flattening of p by the
function fl : Dist(Dist(S)) — Dist(S) by

i)(s)= DY u )W (s).

v'€supp(p)

where supp(p) is the support of p ({x | u(x) > 0}).
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Definition (>L>)

Given a transition 5C S x Dist(S), | let
- C Dist(S) x Dist(S) be defined by 11 ~ v if and only if
Basic operations there exists 1/, such that uf(—>)r/ and v = fI(v/).

Definition (Lifting of a measure)

Also given p € Dist(S) let ji, where

i) ={ 5 1

otherwise
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Given a probabilistic automaton

A= (S 1 {5Yen - ),

define its lifting

Basic operations

Lift(A) = (Dist(S), {1}, V),

where V' : AP — P(Dist(S)), such that u € V(p) if and
only if supp(x) N [|pl| # 0.

The exact definition of V here is somewhat arbitrary, but it
relates to predicate liftings in coalgebraic modal logic.
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pu=ploplene|[=le]L(p)
Given a probabilistic automaton A = (S, 1/, {4};61, -1
(with lifting (Dist(S), {~}, V))
pwEp iff 1 € V(p)

pE iff w9
pE 1 Ay iff = py and w4

= [>L>]cp iff v = 1) whenever ,u>’—>y
Wk L iy | v o)) > r
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