#### Reasoning with Probabilities Basic Probability Logics

Joshua Sack

### Probabilistic Propositional Logic

Propositional Logic

Proof system

Modal Probability

Modal Flobabili Logic

Harsanyi ty

Harsanyi type Actions

# Reasoning with Probabilities Basic Probability Logics

Joshua Sack

August 6, 2013



#### Reasoning with Probabilities Basic Probability Logics

Joshua Sack

#### Probabilistic Propositional Logic

Expressivity
Proof system

#### Modal Probability

Logic

Harsanyi types

# **Probabilistic Propositional Logic**

# Probability language (with linear combinations)

Let AP be a set of proposition letters.

Propositional formulas:

$$\varphi ::= \top \mid \boldsymbol{p} \mid \neg \varphi \mid \varphi \wedge \varphi$$

Terms:

$$t ::= aP(\varphi) \mid t + t$$

Probability formulas (denote the set of these by  $\mathcal{L}_{\mathrm{LC}}$ ):

$$f ::= t \ge a \mid \neg f \mid f \land f$$

where  $p \in AP$  and  $a \in \mathbb{Q}$ .

Example: 
$$2P(q) + 5P(r) \ge 1 \land P(q \land r) - P(q) + P(r) \ge 0$$
.

This language is from:

R. Fagin, J. Halpern, N. Megiddo. Reasoning about Probabilities. *Information and Computation* (1990).

# Language without linear combinations

Joshua Sack

#### Probabilistic Propositional Logic

Modal Probability

Let AP be a set of proposition letters.

Propositional formulas (denote the set of these by  $\mathcal{L}_{\mathrm{PL}}(AP)$ ):

$$\varphi ::= \top \,|\, p \,|\, \neg \varphi \,|\, \varphi \wedge \varphi$$

Probability formulas (denote the set of these by  $\mathcal{L}_{NC}$ ):

$$f ::= P(\varphi) \ge a \mid \neg f \mid f \land f$$

where  $p \in AP$  and  $a \in \mathbb{O}$ .

Example: 
$$P(q) \ge 1 \land \neg P(q \land r) \ge 0$$
.



#### Probabilistic Propositional Logic

Propositional Log Expressivity

Proof system Complexity

Modal Probability

Harsanyi type

# Probability models and semantics

Let AP be a set of proposition letters.

$$M = (X, \mathcal{A}, \mu, \|\cdot\|)$$
, where

- $(X, A, \mu)$  is a probability space
- $\bullet \parallel \cdot \parallel : AP \rightarrow \mathcal{A}$

Define function  $\llbracket \cdot \rrbracket$  from propositional formulas to  $\mathcal{A}$ :

Note:  $\llbracket \varphi \rrbracket \in \mathcal{A}$  for every  $\varphi$ .

Define relation |= between models and probability formulas:

$$M \models a_1 P(\varphi_1) + \dots + a_n P(\varphi_n) \ge r \text{ iff}$$
$$a_1 \mu(\llbracket \varphi_1 \rrbracket) + \dots + a_n \mu(\llbracket \varphi_n \rrbracket) \ge r.$$



### Probabilistic Propositional Logic

Expressivity
Proof system
Complexity

### Modal Probability

Logic

Harsanyi typ Actions

## A note about $\sigma$ -algebras

Here are two examples of measure spaces that are used.

- (discrete)  $(X, A, \mu)$ , where
  - A = P(X) (the power set of X)
  - ullet  $\mu$  is such that
    - $\{a \in X \mid \mu(\{a\}) > 0\}$  is countable, and
    - $\bullet \quad \sum_{a \in X} \mu(\{a\}) = 1$

In such cases, we often focus on the mass function of  $\mu$  whose domain is X rather than the set function  $\mu$  itself.

- (continuous)  $(X, A, \mu)$ , where
  - X = [0, 1],
  - ullet  ${\cal A}$  is the set of Lebesgue measurable subsets of [0,1],
  - ullet  $\mu$  is the uniform distribution.

Recall from the discussion of Vitalli sets that A cannot be  $\mathcal{P}(X)$  if we want  $\mu$  to remain a uniform probability distribution.



#### Probabilistic Propositional Logic

Expressivity
Proof system
Complexity

#### Modal Probability

Logic

Harsanyi typ Actions

### Abbreviations

Let

$$\sum_{k=1}^{n} a_k P(\varphi_k) \equiv a_1 P(\varphi_1) + \cdots + a_n P(\varphi_n)$$

Then if  $t = \sum_{k=1}^{n} a_k P(\varphi_k)$ , let  $bt = \sum_{k=1}^{n} ba_k P(\varphi_k)$ 

$$\begin{array}{ll} t \leq r \equiv -t \geq -r & t_1 \geq t_2 \equiv t_1 - t_2 \geq 0 \\ t = r \equiv (t \leq r) \wedge (t \geq r) & t_1 \leq t_2 \equiv t_1 - t_2 \leq 0 \\ t > r \equiv \neg (t \leq r) & t_1 = t_2 \equiv t_1 - t_2 = 0 \end{array}$$

Without linear combinations:

$$\frac{P(\varphi) \le r}{P(\varphi) \le r} \equiv \frac{P(\neg \varphi) \ge 1 - r}{P(\varphi) = r} \equiv (P(\varphi) \le r) \land (P(\varphi) \ge r) 
P(\varphi) > r \equiv \neg (P(\varphi) \le r)$$

Probabilistic Propositional Logic

Expressivity
Proof system
Complexity

### Modal Probabilit

Harsanyi typ

# Expressing Finite Additivity

### With linear combinations

If  $\neg(\varphi \land \psi)$  is a tautology, then

$$P(\varphi) + P(\psi) = P(\varphi \lor \psi)$$

In general (for any  $\varphi$  and  $\psi$ ),

$$P(\varphi \wedge \psi) + P(\varphi \wedge \neg \psi) = P(\varphi)$$

Without linear combinations

$$(P(\varphi \wedge \psi) = r \wedge P(\varphi \wedge \neg \psi) = s) \rightarrow P(\varphi) = r + s$$

For a given  $\varphi$  and  $\psi$ , expressing additivity without linear combinations as given above involves infinitely many formulas (ranging over r and s).

### Expressivity of linear combinations

Joshua Sack

Probabilistic Expressivity

Modal Probability

### $\mathsf{Theorem}$

The class C of probability models  $(X, A, \mu, \|\cdot\|)$ , such that  $\|p\| > \|q\|$ , is definable (among all probability models) by a formula in  $\mathcal{L}_{LC}$ , but not by any formula in  $\mathcal{L}_{NC}$ .

### Proof idea:

- Note  $P(p) \geq P(q) \in \mathcal{L}_{LC}$  characterizes  $\mathcal{C}$ .
- To show no such formula is in  $\mathcal{L}_{NC}$ , focus on atoms:
  - Let  $AP = \{p_1, \dots, p_n\}$  s.t.  $p = p_i$  and  $q = p_i$  for some i, j
  - Let  $At_{AP} = \{ \bigwedge_{i=1}^{n} \ell(p) \mid \ell(p) \in \{p, \neg p\} \}_{\ell \in 2^{AP}}$
- $P(p) \ge P(q)$  is equivalent to  $P(p \wedge \neg q) - P(\neg p \wedge q) > 0$  (here  $AP = \{p, q\}$ )



#### Probabilistic Propositional Logic Expressivity

Expressivity
Proof system
Complexity

Modal Probability

Logic Harsanyi tynes

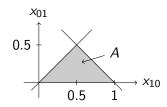
Harsanyi type Actions

# Visualizing the solution set

- Let  $S = \mathbb{R}^4$ , where each axis corresponds to the probability value of an atom in  $At_{\{p,q\}}$ .
- Denote these axis by  $x_{00}$ ,  $x_{01}$ ,  $x_{10}$ , and  $x_{11}$ .
- Identify  $P(p \land \neg q) P(\neg p \land q) \ge 0$  with the inequality  $x_{10} x_{01} \ge 0$  (setting  $x_{10} = \mu(\llbracket p \land \neg q \rrbracket)$ ) etc).

Then the projection of the solution set of  $x_{10} - x_{01} \ge 0$  in S onto the  $x_{10}$ - $x_{01}$  plane is then the area A enclosed by the equations:

$$x_{10} - x_{01} \ge 0,$$
  
 $x_{10} + x_{01} \le 1,$   
 $x_{01} \ge 0,$ 



### Lemma

Joshua Sack

# Probabilistic Propositional Logic Expressivity

Proof system Complexity

### Modal Probability

Logic

Harsanyi type Actions

### Lemma

Suppose that  $p, q \in AP$ ,  $\varphi \in \mathcal{L}_{PL}(AP)$  is a propositional formula, and  $c \in 2^{At_{AP}}$  is such that for each  $\chi \in At_{AP}$ ,

Then

$$\models P(\varphi) \ge r \leftrightarrow \sum_{\chi \in At_{AP}} c_{\chi} P(\chi) \ge r.$$

Probabilistic
Propositional Logic
Expressivity
Proof system

Modal Probability

Harsanyi type

### Remaining steps

Suppose toward a contradiction that  $f \in \mathcal{L}_{NC}(AP)$  is such that  $\models f \leftrightarrow P(p) \geq P(q)$ .

 Place f into disjunctive normal form, and pick some disjunct d. Then

$$\models d \rightarrow P(p) \geq P(q)$$
.

- Let B be the set of values that  $x_{10}$  can attain given d.
- Let  $\theta: B \to \mathbb{R}$  map each a to the supremum of the values that  $x_{10}$  can attain when  $x_{01} = a$  given d.

Then  $\theta$  must be non-increasing, as each constraint in d is

$$\sum_{\chi \in At_{AP}} c_{\chi} P(\chi) \ge r \text{ or } \sum_{\chi \in At_{AP}} c_{\chi} P(\chi) < r$$

with  $c_{\chi} \in \{0,1\}$  (non-negative!)



#### Probabilistic Propositional Logic Expressivity

Proof system Complexity

### Modal Probability

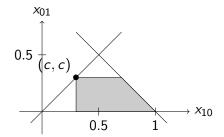
Harsanyi ty

### Visualizing final steps

Let c be the infimum of values  $x_{10}$  can obtain given d. Then

$$\vDash d \to P(p \land \neg q) \ge c \land P(\neg p \land q) \le c.$$

Thus the models that satisfy d must be contained in regions that we depict as follows:



No finite set of regions subject to such constraints has a union equal to A.



# **Proof system**

Joshua Sack

#### Probabilistic Propositional Logic Expressivity

Proof system Complexity

### Modal Probability

Logic

Harsanyi type

- All propositional tautologies
- Equality:  $P(\varphi) = P(\psi)$  whenever  $\varphi \leftrightarrow \psi$  is a propositional tautology
- Kolmogorov axioms of probability:

• 
$$P(\varphi) \geq 0$$

• 
$$P(\top) = 1$$

• 
$$P(\varphi \wedge \psi) + P(\varphi \wedge \neg \psi) = P(\varphi)$$

- Modus ponens: If  $\vdash \varphi$  and  $\vdash \varphi \to \psi$ , then  $\vdash \psi$ .
- Inequality axioms (next slide)

Probabilistic
Propositional Logic
Expressivity
Proof system

Modal Probability

Harsanyi typ Actions

# Inequality axioms

- (permutation)  $a_1 P(\varphi_1) + \cdots + a_n P(\varphi_n) \ge r \rightarrow a_{i_1} P(\varphi_{i_1}) + \cdots + a_{i_n} P(\varphi_{i_n}) \ge r$
- (adding coefficients)  $(\sum_{k=1}^{n} a_k P(\varphi_k) \ge r) \wedge (\sum_{k=1}^{n} b_k P(\varphi_k) \ge s) \rightarrow (\sum_{k=1}^{n} (a_k + b_k) P(\varphi_k) \ge (r+s))$
- (adding and deleting 0 terms)  $(t \ge r) \leftrightarrow (t + 0P(\varphi) \ge r)$
- (multiplying by non-zero coefficient)  $t \ge r \leftrightarrow at \ge ar$  whenever a > 0.
- (dichotomy)
   t > r ∨ t < r</li>
- (monotonicity)
- $t > r \rightarrow t > s$ , whenever r > s.



Probabilistic Propositional Logic Expressivity Proof system

Modal Probability Logic

Harsanyi types Actions

# Lemma for Completeness

- $AP = \{p_1, \dots, p_n\}$  is a set of proposition letters,
- $At(AP) = \{ \bigwedge_{i=1}^n q_i \mid q_i \in \{p_i, \neg p_i\} \}$  is set of atoms.

### Lemma

Let  $t \ge r$  be a probability formula, and AP a set of proposition letters containing all letters occurring in t. Let  $At(AP) = \{\alpha_1, \ldots, \alpha_{2^n}\}$ . Then there are rationals  $a_1, \ldots, a_{2^n}$  such that  $t \ge r$  is equivalent to  $a_1P(\alpha_1) + \cdots + a_{2^n}P(\alpha_{2^n}) \ge r$ .

Let 
$$At(AP, \varphi) = \{\alpha \in At(AP) \mid \vdash \alpha \rightarrow \varphi\}$$
. Then

$$P(\varphi) \equiv \sum_{\alpha \in At(AP,\varphi)} P(\varphi \wedge \alpha) \equiv \sum_{\alpha \in At(AP,\varphi)} P(\alpha).$$

The first equivalence comes from multiple applications of additivity proposition letter by proposition letter.

Probabilistic
Propositional Logic
Expressivity
Proof system

### Modal Probability

Harsanyi typ Actions

# Completeness of Halpern's Probability Logic

Let f be a probability formula. It is a Boolean combination of atomic probability formulas.

- Transform f into disjunctive normal form: a disjunction of conjunctions of probability formulas.
- Consider a disjunct

$$g = (t_1 \ge r_1) \land \cdots \land (t_k \ge r_k)$$
  
 
$$\land \neg (t_{k+1} \ge r_{k+1}) \land \cdots \land \neg (t_m \ge r_m).$$

- Let  $AP = \{p_1, \dots, p_n\}$  be the set of proposition letters occurring in g
- Let  $At = \{\delta_1, \dots, \delta_{2^n}\}$  be the set of all atoms: conjunctions of n literals from AP
- Each conjunct  $t_i \ge r_i$  of g is equivalent to  $a_{i,1}P(\delta_1) + \cdots + a_{i,2^n}P(\delta_{2^n}) \ge r_i$



Probabilistic
Propositional Logic
Expressivity
Proof system

Modal Probability

Logic

Harsanyi type Actions

# System of inequalities

The disjunct g is equivalent to the following system of inequalities:

Probabilistic Propositional Logic Expressivity Proof system

Modal Probability Logic

Harsanyi type Actions

# Final step

Completeness follows from the fact that the logic can follow the along with the steps of a mathematical algorithm (e.g. Fourier-Motzkin elimination) that checks whether a solution to the system of inequalities exists. If there were no solution, then the logic would prove false.

# Small model theorem (towards complexity)

Joshua Sack

Probabilistic
Propositional Logi

Expressivity Proof system Complexity

Modal Probabilit<u>ı</u> Logic

Harsanyi type Actions Given a probability formula f, let

- |f| be its length (number of symbols).
- ||f|| be length of the longest coefficient occurring in f

## Theorem (Small model theorem)

If a probability formula f is satisfiable, then it is satisfiable in a model with the following properties

- 1 there are at most |f| states,
- 2 every set of states is measurable, and
- **3** the probability of each singleton is a rational number of size  $O(|f|||f|| + |f|\log(|f|))$ .

# Helpful lemma for small model theorem

Joshua Sack

Probabilistic
Propositional Logic
Expressivity
Proof system
Complexity

Modal Probability

Harsanyi type Actions From completeness, we have a model for f with at most  $2^n$  (where n is the size of AP) states. We want to bound the model by the size of f (or the number of inequalities in f).

### Lemma

If a system of r linear inequalities (or equalities) with integer coefficients each of length at most  $\ell$  has a nonnegative solution, then it has a nonnegative solution with

- at most r entries positive, and
- where the size of each number of the solution is  $O(r\ell + r \log(r))$ .

### Another lemma for the small model theorem

Joshua Sack

Probabilistic
Propositional Logic
Expressivity
Proof system

Modal Probabilit

Harsanyi types

Complexity

### Lemma

Let f be a probability formula, and let  $(X, \mathcal{A}, \mu)$  be a probability space and  $\|\cdot\|_1$  and  $\|\cdot\|_2$  valuation functions that agree on all atomic propositions occurring in f, then  $(X, \mathcal{A}, \mu, \|\cdot\|_1) \models f$  iff  $(X, \mathcal{A}, \mu, \|\cdot\|_2) \models f$ 

Here  $\|\cdot\|_1$  and  $\|\cdot\|_2$  can have different domains (but both containing the proposition letters in f). Thus f is satisfiable if and only if it is satisfiable in a model whose propositions are just those in f.

Probabilistic
Propositional Logic
Expressivity
Proof system
Complexity

Modal Probability

Harsanyi type

# Satisfiability problem: NP-complete

- lower bound: probability logic satisfiability at least as hard as the boolean satisfiability problem (known to be NP complete):  $\varphi$  is satisfiable iff  $P(\varphi) > 0$  is.
- upper bound: Non-deterministically select a small model. Then check (polynomial time):
  - for each expression  $P(\varphi)$ 
    - determine [φ] by checking the truth at each state in the model
       (at most |f| such expressions and |f| states to check).
    - determine the probability value of  $P(\varphi)$  by adding the probability values of each state in  $[\![\varphi]\!]$ . (each value has size  $O(|f|||f||+|f|\log(|f|))$  and at most |f| states in  $[\![\varphi]\!]$ ).
  - for each atomic probability formula  $t \ge a$ , perform the arithmetic to determine the truth value.
  - what remains is checking a given valuation (given by the truth of the atomic probability formulas) in a Boolean formula.



#### Reasoning with Probabilities Basic Probability Logics

Joshua Sack

### Probabilistic

Expressivity
Proof system

#### Modal Probability

#### Logic

Harsanyi types Actions

# Modal Probability Logic

# Simple Modal Probabilistic Language

Joshua Sack

# Probabilistic Propositional Logic

Expressivity
Proof system
Complexity

### Modal Probability

Logic

Harsanyi typ Actions Let AP be a set of proposition letters and I a set of labels. Modal Probability Formulas (denote the set of these by  $\mathcal{L}_{\mathrm{MP}}$ ):

$$\varphi ::= p \mid \neg \varphi \mid \varphi \wedge \varphi \mid P_i(\varphi) \geq r$$

where  $p \in AP$ ,  $i \in I$ , and  $r \in \mathbb{Q}$ .

Example: 
$$P_i(P_k(q) \ge 0.5) \ge 1 \land \neg P_k(q \land r) \ge 0.$$

Alternative notation that is often used:

- $L_r^i \varphi$  for  $P_i(\varphi) \ge r$  and  $M_r^i \varphi$  for  $P_i(\varphi) \le r$  (Suggested by Aumann 1995)
- $\langle i \rangle_r \varphi$  for  $P_i(\varphi) \geq r$  (Larsen and Skou)



#### Probabilistic Propositional Logic

Expressivity Proof system Complexity

### Modal Probability

Logic

### Models and semantics

### Definition

Let AP be a set of proposition letters and I a set of labels. A Probabilistic Modal Model is  $M = (X, \|\cdot\|, \{\mathbb{P}_i\}_{i \in I})$ , where

- X is a set
- $\bullet \parallel \cdot \parallel : AP \rightarrow \mathcal{P}(X)$  is a valuation function
- $\mathbb{P}_i$  is a map from X to probability spaces  $(S_{i,x}, A_{i,x}, \mu_{i,x})$ , such that  $S_{i,x} \subseteq X$ .

The semantics of formulas is defined by a function  $\llbracket \cdot \rrbracket$  from formulas to subsets of X.



#### Probabilistic Propositional Logic

Expressivity Proof system Complexity

### Modal Probability

Logic

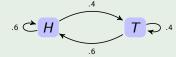
Harsanyi type Actions

### Intuition about semantics

When X is finite and all  $A_{i,x} = \mathcal{P}(X)$ , then depict a probability function as a directed graph labelled with probabilities:

### Example

We represent the uncertainty of *one* agent about the result of flipping a weighted coin:



Notice that the sum of the numbers on arrows leaving a state is 1.

# Multi-agent example

Joshua Sack

### Probabilistic

### Modal Probability

### Logic

### Example

Player 1 knows the coin is weighted, but player 2 does not:

$$w_3 \models P_1(h) \ge .6 \land P_1(P_2(h) \ge .5) \ge 1.$$
  
 $w_3 \models L_{.6}^1 h \land L_{.1}^1 L_{.5}^2 h.$ 

#### Probabilistic Propositional Logic Expressivity

Expressivity Proof system Complexity

#### Modal Probability Logic

Harsanyi type Actions

# Ensuring measurability of formulas

A probabilistic modal model  $(X, \|\cdot\|, \{\mathbb{P}_i\}_{i\in I})$  satisfies meas if there exists a sigma algebra  $\mathcal{A} \subseteq \mathcal{P}(X)$  (intuitively  $\mathcal{A}$  contains  $[\![\varphi]\!]$  for all  $\varphi$ ), such that the following conditions hold for each i.

- $\{A \cap S_{i,x} \mid A \in A\} \subseteq A_{i,x}$  (for each  $x \in X$ )
- $\mathbb{P}_i$  is a measurable function from (X, A) to  $(\operatorname{spaces}(X), \mathcal{B})$ , where
  - spaces(X) is the set of all probability spaces ( $S, C, \nu$ ) such that  $S \subseteq X$  and  $\{A \cap S \mid A \in A\} \subseteq C$ ,
  - ullet  ${\cal B}$  is the  $\sigma$ -algebra generated from the set

$$\{(S,\mathcal{C},\nu)\mid \sum_{k=1}^n a_k\nu(A_k\cap S)\geq r\}$$

for each  $n \ge 1$ ,  $A_k \in \mathcal{A}$ , and  $a_k, r \in \mathbb{Q}$   $(1 \le k \le n)$ 

 $\bullet \parallel \cdot \parallel : AP \rightarrow \mathcal{A} \text{ (for the base case)}$ 



Probabilistic
Propositional Logic
Expressivity
Proof system

Modal Probability Logic

Harsanyi types Actions

# Harsanyi Types

Harsanyi Types are used in economics to model probabilities one player may have about the probabilities of others. They can be modeled using probabilistic modal models as follows

### Definition

A Harsanyi type model is a probabilistic modal model  $(X, \|\cdot\|, \{\mathbb{P}_i\}_{i\in I})$  that satisfy meas and where there is a  $\sigma$ -algebra  $\mathcal{A}$  over X, such that for each x,  $\mathbb{P}_{i,x} = (X, \mathcal{A}, \mu)$  for some probability measure  $\mu$ .

### Definition

The two components  $(X, \{\mathbb{P}_i\})$  of a Harsanyi type model is called a *Hansanyi type space* 

#### Reasoning with Probabilities Basic Probability Logics

Joshua Sack

# Probabilistic Propositional Logic Expressivity Proof system

Proof system Complexity

Modal Probability Logic

Harsanyi types Actions

# Proof system for Harsanyi models

Using Aumann's notation, but with only one agent:

- All propositional tautologies
- $L_0(\varphi)$ , for all formulas  $\varphi$
- $L_r(\top)$ , for all  $r \in \mathbb{Q} \cap [0,1]$
- $L_r \varphi \to \neg L_s \neg \varphi$ , for r + s > 1
- $L_r(\varphi \wedge \psi) \wedge L_s(\varphi \wedge \neg \psi) \rightarrow L_{r+s}(\varphi)$ , for  $r+s \leq 1$
- $\neg L_r(\varphi \land \psi) \land \neg L_s(\varphi \land \neg \psi) \rightarrow \neg L_{r+s}(\varphi)$ , for  $r+s \le 1$
- If  $\vdash \varphi \leftrightarrow \psi$ , then  $\vdash L_r \varphi \leftrightarrow L_r \psi$
- If  $\vdash \gamma \to L_s \varphi$  for all s < r, then  $\vdash \gamma \to L_r \varphi$
- If  $\vdash \varphi$  and  $\vdash \varphi \to \psi$ , then  $\vdash \psi$ .

This system is sound and weakly complete with respect to the one agent Harsanyi type models.

C. Zhou. A complete deductive system for probability logic. *Logic and Computation*. 2009



#### Probabilistic Propositional Logic

Expressivity Proof system Complexity

#### Modal Probability Logic

Harsanyi type Actions

# Computational interpretation

- Often discrete:  $\mathcal{P}_i = (X, \mathcal{P}(X), \mu)$  is such that  $\mu(\{x\}) > 0$  or countably many  $x \in X$ .
- Interpret I as a set of actions (not agents)

When X is finite, a discrete probabilistic modal model  $(X, \|\cdot\|, \{\mathbb{P}_i\})$  is can be pictured as a labelled directed graph (relational structure) with

- nodes labelled by subsets of AP and
- relational connections labelled by pairs (i, r), where i is an action, and r is a probability value (the sum of the values of all arrows leaving a state x labeled with i is 1).
- Interpret  $P_i(\varphi) \ge r$  to be "The probability that action i results in  $\varphi$  is at least r."



# Computational example

Joshua Sack

#### Probabilistic Propositional Logi

Expressivity Proof system Complexity

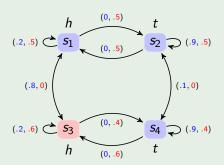
### Modal Probability

Logic

Harsanyi typ Actions

### Example

Action a can change the chance that action b results in the property h or t.



$$s_3 \vDash P_a(P_b t \ge .5) \ge .8$$
  
 $s_3 \vDash \langle a \rangle_{.8} \langle b \rangle_{.5} t$ 

#### Reasoning with Probabilities Basic Probability Logics

Joshua Sack

# Probabilistic Propositional Logic

Expressivity Proof system Complexity

#### Modal Probabilit Logic

Harsanyi type Actions

# Bisimulation on probabilistic modal structures

### Definition

Given a discrete probabilistic probabilistic model  $M=(X,\|\cdot\|,\{\mathbb{P}_i\})$ , a bisimulation on M is an equivalence relation R, such that whenever xRy, then for all labels  $i\in I$ , all equivalence classes  $C\in X/R$ ,  $\mu_{i,x}(C)=\mu_{i,y}(C)$ .

A sight generalization of this for probabilistic transition systems where each  $\mathbb{P}_i$  is a partial function is given in

• K. Larsen and A. Skou. Bisimulation through probabilistic testing. *Information and Computation*, 94(1):1–28, (1991).

### Theorem (Adapted from Larsen and Skou Thm. 6.4)

Given a discrete probabilistic model  $(X, \|\cdot\|, \{\mathbb{P}_i\})$ , such that there exists an  $\epsilon$ , such that for all  $i \in I$  and  $x, y \in X$ ,  $\mu_{i,x}(y) = n\epsilon$  for some integer n. Then two states  $x, y \in X$  are bisimilar if and only if x and y satisfy exactly the same formulas in  $\mathcal{L}_{\mathrm{MP}}$ .