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il P robability language (with linear combinations)

Let AP be a set of proposition letters.
Joshua Sack Propositional formulas:

Probabilistic

Propositional Logic SO = T | p | _‘SD | 80 /\ (P

Terms:
tu=aP(p) | t+1t

Probability formulas (denote the set of these by Ly ¢):
fo=t>al|~f|fAF
where p € AP and a € Q.

Example: 2P(q) +5P(r) > 1AP(gAr)— P(q) + P(r) > 0. |

This language is from:

R. Fagin, J. Halpern, N. Megiddo. Reasoning about
Probabilities. Information and Computation (1990).
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Probabilistic Let AP be a set of proposition letters.

Propositional Logic

Propositional formulas (denote the set of these by
Lpr(AP)):
pu=Tlpl-plone
Probability formulas (denote the set of these by Ln¢):
fo=Plp)>al|-~f|fAF
where p € AP and a € Q.

Example: P(q) > 1A—=P(gAr)>0.
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el P robability models and semantics
Let AP be a set of proposition letters.
M = (X, A, i, ]| - ). where
Provecition Logic e (X, A, ) is a probability space
o |-||:AP = A

Define function [-] from propositional formulas to A:

Joshua Sack

[T =X
[rl = |lpll
[-¢] = X-1[¥]

[e Ayl = [el N Y]
Note: [¢] € A for every .

Define relation |= between models and probability formulas:
M = a1P(p1) + - 4+ anP(pn) > riff
ap([e1]) + -+ + anp(len]) = r.
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it [\ note about o-algebras

Joshua Sack Here are two examples of measure spaces that are used.
Probabilistic o (discrete) (X, A, 1), where

Propositional Logic

o A =P(X) (the power set of X)
e /i is such that
o {ae X | u({a}) > 0} is countable, and
° > exnl{a}) =1
In such cases, we often focus on the mass function of u
whose domain is X rather than the set function p itself.
@ (continuous) (X, A, i), where
o X = [O7 1],
o A is the set of Lebesgue measurable subsets of [0, 1],
e i is the uniform distribution.
Recall from the discussion of Vitalli sets that A cannot
be P(X) if we want u to remain a uniform probability
distribution.
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Probabilities Abbreviations

Joshua Sack Let

n
Probabilistic Z akP(SOk) =a P(SO].) + e+ anP(@n)

Propositional Logic

k=1
Thenif t = ZZ:l akP(gak), let bt = 22:1 bakP((pk)

t<r = —t>—r >tk =t —1>0
t=r = (t<r)A(t>7) <t =t —t <0
t = (t<r) th=th =t —tb=0
Without linear combinations:
Plp)<r = Plop)=1-r
P(p)=r = (P(p) <r)A(P(¢) > 1)
P(p) >r = =(P(p) <r)
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awwiionil [ xpressing Finite Additivity

With linear combinations
If =(¢ A %) is a tautology, then

P(p) + P(¢) = P(p V)

Joshua Sack

Expressivity

In general (for any ¢ and 1),
P(o A) + Pl A=) = P(p)
Without linear combinations

(Pleny)=rAP(pN)=5s)— Plp)=r+s

For a given ¢ and %, expressing additivity without linear
combinations as given above involves infinitely many
formulas (ranging over r and s).
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The class C of probability models (X, A, u, || - ||), such that

Expressivity

llpll > |lqll, is definable (among all probability models) by a
formula in L1,c, but not by any formula in Lyc.

Proof idea:

e Note P(p) > P(q) € Li,c characterizes C.
@ To show no such formula is in Ly, focus on atoms:
o Let AP ={p1,...,pn} s.t. p=p; and g = p; for some
iJ
o Let Atap = {AiL; U(p) | U(p) € {P, =P} }rcorr
e P(p) > P(q) is equivalent to
P(pA—=q) — P(=p A q) >0 (here AP = {p, q})
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il \/isualizing the solution set

Joshua Sack o Let S =R* where each axis corresponds to the
probability value of an atom in Aty, 1.
o @ Denote these axis by xpo, Xp1, X10, and xi1.
e Identify P(p A =q) — P(—p A g) > 0 with the inequality
x10 — xo1 > 0 (setting x10 = p([p A —q]) etc).
Then the projection of the solution set of x30 — x01 > 0in §

onto the xj0-Xp1 plane is then the area A enclosed by the
equations:

Xo1
x10 — X1 = O,
x10 +x01 < 1, 0.5 A
x1 = 0,
+ N X10
| o5 1
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Probabilistic
Prop ional Logic
Expressivity

Lemma

Suppose that p,q € AP, ¢ € Lpr,(AP) is a propositional
Uf:]'ﬁ" fobenily formula, and ¢ € 24P s such that for each x € Atap,

o — 1 x — @ is a tautology
X7 1 0 otherwise.

Then
FP(p)>re Y oPkx)>r.

XEAtap
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Probabilities Remaining StepS

Suppose toward a contradiction that f € Lyc(AP) is such
that £ f < P(p) > P(q).

@ Place f into disjunctive normal form, and pick some
disjunct d. Then

Joshua Sack

Expressivity

= d = P(p) = P(q).

@ Let B be the set of values that xjg can attain given d.

o Let 8: B — R map each a to the supremum of the
values that xjp can attain when xp; = a given d.

Then 6 must be non-increasing, as each constraint in d is

Z o P(x) > ror Z oP(x)<r

XEAtap XEAtap

with ¢, € {0,1} (non-negative!)
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Probabilities Visualizing final steps

Let ¢ be the infimum of values x19 can obtain given d. Then
Joshua Sack

Fd— P(pA—-q)>cAP(-pAgq)<c.

Expressivity

Thus the models that satisfy d must be contained in regions
that we depict as follows:

X01

0.5 (c. o)

} X10
0.5 1

No finite set of regions subject to such constraints has a
union equal to A.
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All propositional tautologies

Equality: P(p) = P(¢) whenever ¢ <> 1) is a
propositional tautology

Proof system

Kolmogorov axioms of probability:

° P(p)=0

o P(M)=1

o P(p A9p) + P(e A=) = P(p)
Modus ponens: If - ¢ and F ¢ — 4, then - 1.
Inequality axioms (next slide)
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Probabilities Inequality axioms

Joshua Sack o (permutation)
alp((pl) +---+ anP(SOn) >r—
o) e Pl >

Proof system

(adding coefficients)
(Xk=1 kP (i) = r) A (k=1 bkP(pk) = 5) =
(X k=1(ak + bi)P(pi) = (r +5))
(adding and deleting 0 terms)
(t>r)< (t+0P(p) >r)
e (multiplying by non-zero coefficient)
t > r <+ at > ar whenever a > 0.
e (dichotomy)
t>rvt<r

e (monotonicity)
t>r — t>s, whenever r > s.
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el | cmmma for Completeness

o AP ={p1,...,pn} is a set of proposition letters,
o At(AP) ={A_,qi| gi € {pi,—pi}} is set of atoms.

Joshua Sack

Proof system

Let t > r be a probability formula, and AP a set of
proposition letters containing all letters occurring in t. Let
At(AP) = {au,...,aon}. Then there are rationals
ai,...,apn such that t > r is equivalent to

aiP(ag) + -+ axmP(agn) > r.

Let At(AP,¢) = {a € At(AP)| Fa — ¢}. Then

P(p) = Z PlpAa)= Z P(«).

a€At(AP,p) a€At(AP,p)

The first equivalence comes from multiple applications of
additivity proposition letter by proposition_letter.
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awwtiomill Completeness of Halpern's Probability Logic

Let f be a probability formula. It is a Boolean combination
of atomic probability formulas.

Joshua Sack

@ Transform f into disjunctive normal form: a disjunction
Proof system of conjunctions of probability formulas.

o Consider a disjunct

g=(t1>r)AN-A(tx > rg)
A (k1 = res1) Ao A(tm > rm).

o Let AP ={p1,...,pn} be the set of proposition letters
occurring in g

o Let At = {01,...,020} be the set of all atoms:
conjunctions of n literals from AP

@ Each conjunct t; > r; of g is equivalent to

aj1P(01) + -+ ajonP(02n) > 1
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Probabilities System of inequalities

The disjunct g is equivalent to the following system of

Joshua Sack
inequalities:
Fresh smem 3171P((51)—|— +31’2"P(52n) > n
ak,lp(51)+ +ak’2nP(62n) > rg
ak+1,1P(51)+ +ak+1’2nP(52n) < rkt1
am1P(61)+ -+ tamanP(0n) < rm
P(01)+ - +P(n) > 1
—P(0)— - —P(8n) > -1
P(61) > 0
P(0r) > 0
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Proof system

Completeness follows from the fact that the logic can follow
the along with the steps of a mathematical algorithm (e.g.
Fourier-Motzkin elimination) that checks whether a solution
to the system of inequalities exists. If there were no solution,
then the logic would prove false.
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Given a probability formula f, let
o |f| be its length (number of symbols).
Complecity @ ||f|| be length of the longest coefficient occurring in f

Theorem (Small model theorem)

If a probability formula f is satisfiable, then it is satisfiable in
a model with the following properties

© there are at most |f| states,
@ every set of states is measurable, and

© the probability of each singleton is a rational number of
size O(|f[[|f| + |f]log(If])).
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awtionil Helpful lemma for small model theorem

Joshua Sack

From completeness, we have a model for f with at most 2"
(where n is the size of AP) states. We want to bound the
Complesity model by the size of f (or the number of inequalities in f).

Lemma

If a system of r linear inequalities (or equalities) with integer
coefficients each of length at most ¢ has a nonnegative
solution, then it has a nonnegative solution with

@ at most r entries positive, and

@ where the size of each number of the solution is
O(rl + rlog(r)).
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S22 Let f be a probability formula, and let (X, A, 1) be a
probability space and || - ||1 and || - ||2 valuation functions
that agree on all atomic propositions occurring in f, then

(XA, |- 1) = FfF (XA s || - l2) = f

Here || - ||1 and || - ||2 can have different domains (but both
containing the proposition letters in f). Thus f is satisfiable
if and only if it is satisfiable in a model whose propositions
are just those in f.
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ikl Satisfiability problem: NP-complete

o Sack @ lower bound: probability logic satisfiability at least as
hard as the boolean satisfiability problem (known to be
NP complete): ¢ is satisfiable iff P(p) > 0 is.

@ upper bound: Non-deterministically select a small
model. Then check (polynomial time):

o for each expression P(¢p)

Complexity

o determine [] by checking the truth at each state in
the model
(at most |f| such expressions and |f| states to check).
o determine the probability value of P(y) by adding the
probability values of each state in [¢].
(each value has size O(|f|||f|| + |f|log(|f])) and at
most |f| states in [¢]).
o for each atomic probability formula t > a, perform the
arithmetic to determine the truth value.
o what remains is checking a given valuation (given by
the truth of the atomic probability formulas) in a
Boolean formula.
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Modal Probability Logic
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Let AP be a set of proposition letters and / a set of labels.
Modal Probability Formulas (denote the set of these by
Lyip):

Modal Probability Yi=p | P | PN | Pi(‘P) >r

Logic

where p € AP, i€/, and r € Q.

Example: Pi(Px(q) > 0.5) > 1A=Px(gAr)>0.

Alternative notation that is often used:
o Liy for Pi(¢) > r and Mip for Pi(p) < r
(Suggested by Aumann 1995)
e (i), for Pi(p) > r (Larsen and Skou)
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Modal Probability
Logic

Models and semantics

Let AP be a set of proposition letters and / a set of labels. A
Probabilistic Modal Model is M = (X, || - ||, {PPi}ier), where

@ X is a set

o ||| : AP = P(X) is a valuation function

@ P; is a map from X to probability spaces
(5,-7X,.A,',X,,u,-,x), such that Si,x C X.

The semantics of formulas is defined by a function [-] from
formulas to subsets of X.

[T]

[l

[-]

[ A 4]
[Pi(w) > r]

X
I

X — [l
el N [¥1]

{x [ i ([eINSix) = r}
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Modal Probability
Logic

Intuition about semantics

When X is finite and all A; , = P(X), then depict a
probability function as a directed graph labelled with
probabilities:

Example

We represent the uncertainty of one agent about the result
of flipping a weighted coin:

4

—~—
e H T O 4
\_/

-6

Notice that the sum of the numbers on arrows leaving a
state is 1.
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Joshua Sack Examp|e

Probabilistic
Propositional Logic

Player 1 knows the coin is weighted, but player 2 does not:

(.5, .5)

h 20t

lt/loog?jl Probability (-5,-5) c w1 (.5, .5) W2 3 (:5,-5)

(0,0.5)

w3 F Pi(h) > .6 A P1(P2(h) > .5) > 1.
ws £ LLAA L1112 h.
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Modal Probability
Logic

Ensuring measurability of formulas

A probabilistic modal model (X, || - ||, {P;i};c/) satisfies meas
if there exists a sigma algebra A C P(X) (intuitively A
contains ] for all ¢), such that the following conditions
hold for each /.

o {ANS; | Ae A} C A, (for each x € X)

e P is a measurable function from (X, .A) to
(spaces(X), B), where

o spaces(X) is the set of all probability spaces (S,C,v)
such that S C X and {ANS|Ac A} CC,
e BB is the o-algebra generated from the set

{(S.C,v) | Y aw(AcnS) > r}

k=1

foreach n>1, A€ A, and a,,re Q (1 < k< n)
@ | -] : AP — A (for the base case)
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Harsanyi types

Harsanyi Types

Harsanyi Types are used in economics to model probabilities
one player may have about the probabilities of others. They
can be modeled using probabilistic modal models as follows

Definition

A Harsanyi type model is a probabilistic modal model

(X, || - |l, {Pi}ics) that satisfy meas and where there is a
o-algebra A over X, such that for each x, P; , = (X, A, 1)
for some probability measure .

Definition

The two components (X, {P;}) of a Harsanyi type model is
called a Hansanyi type space
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Using Aumann’s notation, but with only one agent:

Joshua Sack

@ All propositional tautologies

° Lo(), for all formulas ¢

o L(T) for all r e QN J[0,1]

° Lip = -l forr+s>1
e o L(pNp) A Ls(p A—1p) = Lris(e), forr+s<1

o ~L(pAY)ALs(p A ) = alris(p), forr+s<1

o If -+, then - Lo L)

o IfF~vy— Lgpforalls<r, thent~v— Lo

o If -y and - ¢ — 1, then - .

This system is sound and weakly complete with respect to
the one agent Harsanyi type models.

C. Zhou. A complete deductive system for probability logic.
Logic and Computation. 2009




Reasoning with
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Joshua Sack o Often discrete: P; = (X, P(X), u) is such that
Probabilistic p({x}) > 0 or countably many x € X.

Propositional Logic

@ Interpret | as a set of actions (not agents)
logel Probebilt When X is finite, a discrete probabilistic modal model
e (X, || - |l, {P;}) is can be pictured as a labelled directed graph
(relational structure) with
@ nodes labelled by subsets of AP and

@ relational connections labelled by pairs (7, r), where i is
an action, and r is a probability value (the sum of the
values of all arrows leaving a state x labeled with 7 is 1).

@ Interpret Pi(y) > r to be “The probability that action i
results in ¢ is at least r."
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Probabilistic Action a can change the chance that action b results in the

Propositional Logic

property h or t.

h (0, .5)

t
—~ =

(2,5 C S1 52 D (9,5
T\_/

Modal Probability

0. 5)

Actions

(.8,0) (:1,0)

s3E Py(Pyt > 5) > .8
S3 = (a>_8(b>,5t
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Actions

Bisimulation on probabilistic modal structures

Definition
Given a discrete probabilistic probabilistic model
M = (X,| - |l,{Pi}), a bisimulation on M is an equivalence

relation R, such that whenever xRy, then for all labels j € /,
all equivalence classes C € X/R, pix(C) = pi(C).

A sight generalization of this for probabilistic transition
systems where each P; is a partial function is given in
@ K. Larsen and A. Skou. Bisimulation through probabilistic
testing. Information and Computation, 94(1):1-28, (1991).

Theorem (Adapted from Larsen and Skou Thm. 6.4)

Given a discrete probabilistic model (X, || - ||, {Pi}), such
that there exists an €, such that for all i € | and x,y € X,
pix(y) = ne for some integer n. Then two states x,y € X
are bisimilar if and only if x and y satisfy exactly the same
formulas in Lyip.
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